
ABSTRACTS 

A G R A P H I C O A N A L Y T I C A L  M E T H O D  OF E S T I M A T I N G  

T H E  E F F I C I E N C Y  OF F I N I T E - P E R M E A B I L I T Y  

S O R B E N T  D E S I G N S *  

G. L .  S a k s a g a n s k i i  UDC 621.53 

In o rder  to cope with problems concerning technically and economically optimized designs of suction 
devices with sorbent walls (cryosorption and cryogenic devices,  various modifications of buil t- in discharge 
pumps, etc.), which a re  used more  widely now in modern electrophysical  apparatus construction, a 
graphicoanalyt ical  method has been developed for est imating the per formance  of such devices at the u s e r ' s  
plant. It is shown that the effective suction rate of a device with sorbent walls of an a rb i t r a ry  profile and 
with a specific rate S o can be expressed as 

s = ~so~, (1) 

where c~ is the reduction factor  determined by the geometry  of the sorption sys tem and depending on the 
specific suction rate of the device as well as on the tempera ture  and the molecular  weight of the pumped 
gas, while S0E is the apparent  suction rate of the sorption sys tem,  equal to the specific rate t imes of the 
sorbent surface area.  Formulas  are derived for the reduction factor  of sys tems with a c i rcular ,  a square,  
and a rec tangular  profile.  

A table l ists values of S o for cryogenic,  c ryosorpt ive ,  and magnet ic -d ischarge  suction sys tems 
operat ing on various different gases.  The reduction fac tor  is calculated and plotted as a function of the 
l eng th - to -charac te r i s t i c -d imens ion  ratio for  hydrogen, helium, methane, water vapor,  and carbon di- 
oxide at 4, 20, 77, 293, and 700~ The specific rate has been selected as the pa rame te r ,  its value rang-  
ing from 0.005 to 50 l i t e r s / c m  2 �9 sec,  to cover  the entire gamut of modern suction devices.  The graphs 
show comprehensively  the interrelat ion between the geometry  and the vacuum charac te r i s t i c s  on the one 
hand and the effective suction rate of a sorption sys tem on the other.  

Using the proposed method will simplify the design and the comparat ive evaluation of suction devices 
with sorbent walls. 

A P A R T I C U L A R  M I X E D  P R O B L E M  IN C O N V E C T I V E  

M A S S  T R A N S F E R t  

A.  T .  C h u b  UDC 542.63:628.38 

A diffusion device is considered here where the conver ter  element consists  of two equally long co-  
axial cy l inder -e lec t rodes  with opposite polar i t ies .  The cathode radius at the base r 1 is smal le r  than the 

*Trans la ted  f rom Inzhenerno-Fizicheski i  Zhurnal, Vol. 23, No. 4, pp. 743-763, October, 1972. Orig-  
inal ar t ic le  submitted May 26, 1971; abs t rac t  submitted Februa ry  7. 1972. 
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respect ive anode radius r 2, i . e . ,  r 1 < r 2. The density of the input cur rent  between the electrodes is a s -  
sumed to be a function of z only. Assuming fur ther  that the operat ing requirements  usually stipulated for 
chemotronic applications of such  devices are  met, the author defines the problem as that of determining 
the output cur rent  of the device when the la t ter  operates  in the mode of limiting diffusion current .  

It can be shown that the conventional method of determining the output current  f rom the known con- 
centration of reduced electrolyte according to F ick ' s  law will lead to considerable mathematical  difficul- 
ties here.  On the other hand, the problem here is definable as one of mixed boundary values for the dif- 
ferential equation of convective diffusion and it can, by means of a special kind integral t ransformation,  
be converted into another boundary-value problem admitting an exact solution for a large c lass  of func- 
tions in both the boundary condition and the initial condition. The requirement  is that these functions 
must  be expandable into ser ies  with respec t  to the eigenfunctions Ro(Xkr) of the boundary-value problem 

, I dR I 
R" -r. --r R'  q- ~,~R = O, R (rl) = d-; ]r~r, =0, 

which is possible with a lmost  all functions encountered in the theory of e lect rochemical  conver ters .  

The function which descr ibes  the sought output cur rent  must  satisfy the equation 

ot --  D ~r  + &~ l + - ~  + [ (r, t) 

and the additional conditions 

~ r  r~r~ = U (rl, t) = O, t > O, 

U (r, O) = v (r). 

The formula for the output current  becomes,  in this notation, 

m ~ l  0 r n ~ !  

where F is the Faraday constant, D is the diffusivity, and 
r t  

/ . - -  -2  

t" 1 

fl 

r l  

rz 

cm = l Ro V: II Ro 
t" I 

DETERMINING THE THERMOPHYSICAL PROPERTIES OF 

FLUIDS BY THE DIFFERENTIAL METHOD 

N. N. Medvedev and G. V. Grishchenko UDC 536.2.083 

The laboratory apparatus and the test  procedure  have been descr ibed in [1]. In differential methods 
[1] the test  specimen and the standard specimen are  placed under the same conditions. This el iminates 
some measurement  e r r o r s  due to thermal  contact res i s tances ,  par t ia l  heat losses ,  insufficient heater  
power,  etc. 

Lensovet  Institute of Technology, Leningrad.  
submitted March 20, 1972. 

Original ar t icle  submitted July 16, 1971; abs t rac t  
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w h e r e  

The  t h e o r y  beh ind  th i s  m e t h o d  i s  b a s e d  on the equa t ion  

l ~ - c r  1 
1 ' 9  . :  . - - - -  ~ :  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 erfc y - aerfc 3y-! ' 9:-'6r;c 5y - - . . .  
_ : ( ~ ,  ~,}, (i) 

e- [ ): ~.~' h 
~z ~7:-7-:  ~' .... ;]7:" ; ~  12=77~ - ; 9  ..... }IZ:-s " (2) 

A p p l y i n g  e x p r e s s i o n s  (2) to the s t a n d a r d  s p e c i m e n  and to the t e s t  s p e c i m e n  of  equa l  t h i c k n e s s e s  h at  the 
s a m e  i n s t a n t  of t i m e  r ,  we ob t a in  

'\ y" I, ~A y" yA Y" 

The va lue  of  r a t i o  y ' / y "  fo r  f ixed  v a l u e s  of  0 '  and 0" c o m p l e t e l y  d e t e r m i n e s  p a r a m e t e r s  e and y ' .  

An  a n a l y s i s  of Eq.  (1) i n d i c a t e s  tha t  fo r  y >- 0.7 the funct ion  of  two v a r i a b l e s  P = f ( ~ ,  y) b e c o m e s  a 
func t ion  of one v a r i a b l e  P = f(y),  a c c u r a t e l y  wi th in  0.5-1.0~ i . e . ,  Eq.  (1) b e c o m e s  

[ t - " z  I l . . . . . . . . . . .  ~: -- . . . .  / (y). (4) 
0 erfc y 

In th is  way,  the r i g o r o u s  equa t ion  (1) can  be  t a b u l a t e d  in two s t a g e s :  

1) P = f(y) in the i n t e r v a l  0.7 -< y < ,o; 

2) P = f(ol ,  y) fo r  the  i n t e r v a l  0 < y < 0.7. 

UnI ike  the m e t h o d  shown e a r l i e r  in [1], th i s  m e t h o d  y i e l d s  the  t h e r m o p h y s i c a l  p r o p e r t i e s  fo r  the  c a s e  
c~ A e 0 wi thout  any  s i m p l i f y i n g  a s s u m p t i o n s .  With  an a p p r o p r i a t e  cho ice  of  m a t e r i a l  fo r  the t h e r m o r e c e i v e r  
B fo r  the s t a n d a r d  s p e c i m e n  A,  one can  d e t e r m i n e  the t h e r m o p h y s i c a l  p r o p e r t i e s  of so l id ,  l iqu id ,  and l o o s e  
s u b s t a n c e s  a c c o r d i n g  to the  s i ng l e  f o r m u l a  (4). The  v a l u e s  of  e r f c  y = 1 - e r r  y can  be  p i c k e d  f r o m  t a b l e s  
of  the p r o b a b i l i t y  i n t e g r a l .  

U s i n g  a known va lue  of  ~ A ,  one f inds  PA = - ( 1  + C~A)0 A f o r  v a r i o u s  v a l u e s  of  0 A and,  s u b s e q u e n t l y ,  
a l s o  the v a l u e s  of  YA n e c e s s a r y  f o r  the c a l c u l a t i o n  of  the  t h e r m o p h y s i c a l  p r o p e r t i e s .  If the n u m e r i c a l  
va lue  of  PA does  not  a p p e a r  in the f i r s t  t ab le ,  then i t  m u s t  a p p e a r  in the s e c o n d  t ab le  P = f(oz, y) and i t  
wi l l  d e t e r m i n e  the va lue  of  YA c o r r e s p o n d i n g  to the g iven  v a l u e s  of  o~ A and 0 A.  

A f t e r  that ,  the t e s t  da t a  a r e  f u r t h e r  p r o c e s s e d  a c c o r d i n g  to the p r o c e d u r e  g iven  in [1]. 

P = f(y) and  P = f(oz, y) t a b l e s  f o r  p r a c t i c a l  u s e  a r e  i n c l u d e d  in the a r t i c l e ,  a l s o  the t h e r m o p h y s i c a l  
p r o p e r t i e s  ob t a ined  by  th i s  m e t h o d  fo r  p o l y e t h e r s  and  aqueous  s y r u p  s o l u t i o n s .  

X, XB 
o~, o~ B 
b 

NOTATION 

a r e  the t h e r m a l  c o n d u c t i v i t i e s  of  the t e s t  m a t e r i a l  and of the t h e r m o r e c e i v e r ,  r e s p e c t i v e l y ;  
a r e  the t h e r m a l  d i f f u s i v i t i e s  of  the t e s t  m a t e r i a l  and of  the t h e r m o r e c e i v e r ,  r e s p e c t i v e l y ;  
i s  the t h e r m a l  a c t i v i t y  of  the t h e r m o r e c e i v e r .  

1. 

LITERATURE CITED 
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HEAT AND MASS TRANSFER DURING 

AIR-AND-EVAPORATION COOLING OF 

CYLINDER IN AN ANNULAR CHANNEL 

A. G. Beinusov, A. N. Khoze, 
and E. K. Yadrikhinskii 

A 

UDC 536.242:532.529.5 

One poss ib le  method of a i r - a n d - e v a p o r a t i o n  cooling a cyl inder  in an annular  channel [1] is  con- 
s idered,  with s imultaneous axial  injection of a i r  and wetting the l a te ra l  sur face  by a liquid. 

A hydrodynamic analys is  of this p r o c e s s  shows that, while the liquid f i lm here  flows in the l amina r  
mode,  the two-phase m a i n s t r e a m  can e i ther  be v o r t e x - f r e e  or  contain Tay lo r  vor t i ces .  A char t  of ma in -  
s t r e a m  flow modes  indicates  the var ious  cha rac t e r i s t i c  regions .  

With the aid of these resu l t s ,  an ana lys i s  of heat  and m a s s  t r a n s f e r  within each region is based  on a 
s t ruc tu ra l  p rocedu re  of de termining the total  t he rma l  flux densi ty 

qe:= qconv Jr qevap~ q sep, 

where the components  of the rma l  flux density a re  qconv (convection), qevap (evaporation),  and qsep (sepa-  
ration).  

It is a s sumed  here  that in this case  qconv and qevap can be calculated on the bas i s  of the analogy b e -  
tween heat  and m a s s  t r ans fe r ,  while qsep will bc r ega rded  as  the r e m a i n d e r  t e r m  in Eq. (1). 

Thus,  the p r o b l e m  has  been reduced to set t ing up an a lgor i thm for  the calculat ion of qconv and qevap,  
based  on known s imi la r i ty  laws of heat  t r a n s f e r  during the flow of a homogeneous fluid in geomet r i ca l ly  
s i m i l a r  channels.  

The bas ic  layout of the tes t  appara tus  is descr ibed ,  including the ro ta t ing  cyl inder  inside made of 
g l a s s - f i b e r  tubing with a two- laye r  p r i n t ed -c i r cu i t  hea te r  coil mounted r igidly around i ts  outside sur face .  

The tes t  r e su l t s  a r e  shown in the fo rm of qE = f(tw) re la t ions ,  with t w denoting the mean  wall  t e m -  
p e r a t u r e  of the rota t ing cylinder.  

An analys is  of tes t  r e su l t s  covers  two ranges .  Within one range  the m e a s u r e d  and the calculated 
values  of qE agree  within ~10%. Within the other  range,  at h igher  wall  t e m p e r a t u r e s ,  the calculated values  

d i f fer  f rom the m e a s u r e d  ones,  namely:  qE,calc  > qE,test"  

The d i sc repancy  between qE, tes t  and qE ,calc can, according  to this study, be explained by the ex i s t -  
ence of d ry  regions  on the act ive rota t ing cyl inder  sur face .  A co r rec t ion  of calculated values by a c o v e r -  
age fac tor  will ensure  an ag reemen t ,  within ~20T0, between calculated and m e a s u r e d  values .  

The t e s t s  were  p e r f o r m e d  within the following ranges  of p a r a m e t e r s :  102 <- Ta  <- 35- 103, 102 <- Re" 
- 7.8.103 . 0 . 0 2 4 - < b / r - <  0.24, g ' -<  35 -10 - 3 k g / m  2 . s e e ,  a n d q E  <- 7 5 k W / m  2. 

Ta  = w2rb3/v ''2 

Re = 2wob/v 
TI 

W0 

b 
W 

r 
g' 

N O T A T I O N  

is the Tay lo r  number;  
is  the Reynolds number ;  
is the r e f e r r e d  veloci ty  of the gaseous  phase ,  m / s e c ;  
is the width of the annular  gap, m; 
is the angular  veloci ty,  s ee - l ;  
is the inside radius  of the cyl inder ,  m;  
is  the specif ic  flow ra te  of liquid, k g / m  2 �9 sec.  

S u p e r s c r i p t s  

' denotes gas; 
" denotes liquid. 

Institute of E lec t r i ca l  Engineer ing,  Novosibirsk.  
submit ted March 13, 1972. 

Original  a r t i c le  submit ted May 6, 1971; ab s t r ac t  
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D E T E R M I N I N G  T H E  T H E R M A L  R E S I S T A N C E  D U R I N G  

H E A T  A N D  M A S S  T R A N S F E R  B E T W E E N  W A T E R  

A N D  A I R  

V. P .  A l e k s e e v  a n d  A.  V. D o r o s h e n k o  UDC 621.175.3 

Merkel ' s  method of the enthalpy potential is used widely in the analysis  of simultaneously occur r ing  
heat and mass  t r ans fe r  p r o c e s s e s  in a w a t e r - a i r  system: 

dQz = dQ~ + dQ~ = Gdi a = Wcredt w = ~x (iGw - -  in) dF. (1) 

with the thermal  res i s tance  of the water  film 

dQ~ = 8 0 ( iag  - -  i6 )dF = ~ (tl~, - -  tg) dF.  (2) 

taken into account. 

On the basis  of the two-fi lms theory, an equation is derived here  relating the total thermal  res is tance  
of the sys tem with the component res i s tances  of a i r  film and water  film: 

l/F~x = 1/F~ ~ + m l F ~ / .  (3) 

Equation (3) is valid for  evaporation and condensation in the gi::en system. It is noted that eoeffi- 
cients ot W and/3 ~ can be found graphico-analyt ical ly  by the Mickley-Mizushina method of stepwise curve 
plotting [1-2]. 

G, W 
QE, Q~, Q~ 

h G, hG w,  hGg 

t G, t w,  tg 

a W  
3x 

F 

N O T A T I O N  

are the flow rate of a i r  and water,  respect ively;  
are  the total heat t ransfe r red ,  sensible heat, and latent heat, respect ively;  
are  the enthalpy of a i r  in the mains t ream,  of a ir  at t G = t w and q~G = 1, and of a i r  at 
t G = tg and ~G = 1, respect ively;  
are  the tempera ture  of air ,  of water,  and at the interface,  respect ively;  
is the coefficient of heat t r ans fe r  in the liquid film; 
is the overal l  mass  t rans fe r  coefficient (under the enthalpy difference as the motive 
force in the process) ;  
is the coefficient of mass  t rans fe r  in the air  film; 
is the a rea  of t ransfer  surface.  

1 .  H ~  

2. T. 

L I T E R A T U R E  C I T E D  
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D E T E R M I N A T I O N  OF C R I T E R I A L  N U M B E R S  

D E S C R I B I N G  T H E  E F F E C T  OF M A S S  

T R A N S F E R  ON T H E  H E A T  T R A N S F E R  R A T E  

IN S U B M E R S E D - C O M B U S T I O N  A P P A R A T U S  

A.  N. A l a b o v s k i i  UDC 536.25 

When aqueous solutions of nonvolatile substances are  evaporating in submersed-combust ion  appara-  
tus, then the heat t ransfer  f rom the flue gases  to the liquid surface is accompanied by a t ranspor t  of vapor 
toward the gaseous phase. It is suggested that in such cases  the effect of mass  t ransfer  on the heat t r ans -  
fer  be evaluated in t e rms  of dimensionless groups tlg = Ap/p,  e G = pG/p, and P r  D [1]. At the same time, 
this effect is also described by the Gukhman number [2]. 

An anatysis of the differential equations and of the boundary conditions has shown that, in the general  
case of nonadiabatic evaporation of a liquid, the cr i te r ia [  equation of heat t ransfer  should contain not only 
the 1]g, e G, and P r  D numbers,  but also the number K = r /cAt .  In the special  case of evaporating aqueous 
solutions, this number may be replaced by the temperature  factor  TG/T L. In o rder  to establish the s ig-  
nificance of these numbers,  an experimental  study was made on a laboratory model of a submersed -com-  
bustion apparatus.  The test  resul ts  are  general ized by the equation: 

With a constant submersion depth of the bubble chamber  and a constant flow rate of bubbling gases,  
it is permiss ib le  to d i s regard  changes in the surface a rea  of the iaterphase boundary. 

N O T A T I O N  

o~ is the heat t ransfer  coefficient; 
F is the surface area  of interphase boundary; 
p is the total p r e s su re  of flue gases;  
PG is the part ia l  p re s su re  of dry components; 
Ap is the difference between part[at  p r e s s u r e s  of water  vapor;  
T L is the absolute temperature  of liquid in the apparatus;  
T G is the absolute p res su re  of flue gases;  
r is the heat of evaporation; 
c is the specific heat of flue gases.  

1. 

2. 
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S O L U T I O N  O F  T H E  E Q U A T I O N  O F  H E A T  T R A N S F E R  

IN T H E  A N N U L A R  S P A C E  O F  A R O T A T I N G  M U F F L E  

F U R N A C E  BY T H E  N. K.  K U L I K O V  M E T H O D  

E .  I .  T r e b u k h i n  UDC 536.24:669.041 

The p r o c e s s  of hea t  t r a n s f e r  in the annular  space  of a muffle furnace is d e s c r i b e d  by the equation 

dg 
= - -  a y  4 - -  b y  -~- c 

dx 

with the in i t ia l  condit ions x 0 = 0 and Y0 = I .  

In mos t  c a s e s  one mus t  know the t e m p e r a t u r e  of gases  only at the exit  f rom the aggrega te ,  i . e . ,  a t  a 
s ingle  point.  The re fo re ,  i t  is  worthwhile to solve the equation by the N. K. Kulikov method. This method 
of solution,  which is  outs tanding in i ts  s impl ic i ty ,  y ie lds  highly accu ra t e  r e s u l t s  a l r e a dy  in the zero th  
approx imat ion .  

Replac ing  x by i ts  end value Xe, we obtain the following solut ion to the o r ig ina l  equation in the zero th  
approximat ion:  

a + b - - c  [ ] g(Xk) : 1 ~,(xk) e xhL (xh) - -  i j .  

P a r a m e t e r  X can be approx imated  by the mean value of function ~F(x, y ) /0y  within the region  G. F o r  
this  p a r t i c u l a r  equation,  F(x,  t) = - a y t - b y .  

On the b a s i s  of phys ica l  cons ide ra t ions ,  the max imum value of function y is  in a l l  c a se s  equal to 
unity and its min imum value may  be taken as  equal to 1 / 2 .  Thus, the mean value of X for the en t i re  i n t e r -  
val  can be r e p r e s e n t e d  as  

~ , = p = - - b m 2 , 2 5 a .  

The solution in the zero th  approx imat ion  on the x - i n t e r v a l  f rom 0 to i wil l  then be 

a + b - - c  
y (x)= I (e p~ -- I). 

P 

This solut ion is e x t r e m e l y  s imple  and can be r ecommended  for  rough ca lcu la t ions .  The e r r o r  in de -  
t e rmin ing  the t e m p e r a t u r e  of flue gases  does  not exceed 6%. 

P a r a m e t e r  X,. as  a function of x e, can be de t e rmined  more  p r e c i s e l y  on the bas i s  of the mean-va lue  
theorem for  a d i f fe ren t ia l  equation. With the des ignat ions  

a @ b - - c  a @ b - - c  
A = I @  , B  , 

p p 

we obtain the final exp re s s ion  

~, (x~) = - -  b - -  4aA ~ - -  , a  { [ (PXh-- 1) exp pxk- [- I 3A~B e_xxp 2pxir189 1 

3 3 [ 4 

In this particular case the error at the center of the x-interval from 0 to 1 does not exceed 1%, and 

at x e = 1 the temperature of flue gases is determined almost exactly. 

X 

Y 
a , b , c  

NOTATION 

is  the d imens ion l e s s  length of the muffle furnace;  
is  the d imens ion l e s s  t e m p e r a t u r e  of flue gases ;  
a r e  the d imens ion l e s s  p a r a m e t e r s ,  constant  for  a given opera t ing  mode and de t e rmined  on the 
b a s i s  of the t he rma l  design of the aggrega te .  

Novos ib i r sk  Poly technic  Inst i tute ,  Novos ib i r sk .  Original  a r t i c l e  submit ted  June 10, 1971; a b s t r a c t  
submit ted  March 16, 1972. 
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H E A T  T R A N S F E R  B E T W E E N  M O V I N G  B O D I E S  

C O N T A C T  D U R I N G  M E T A L  M A C H I N I N G  

IN 

Y u .  P .  R a s p u t i n  UDC 536.4 

The problem is to determine the temperature  field of the deformation zone OAB in cut metal (Fig. 1), 
ac ros s  which heat t ransfer  between a moving chip and the moving workpiece occurs  during a machining 
operation. The author has calculated the thermal  flux coming to the workpiece from this zone. 

It is assumed in the formulation of the problem that the chip and the workpiece comprise  two moving 
ha l f -spaces  which abut ac ross  the contact triangle OAB, that the p rocess  is steady, that the cut metal  is 
a homogeneous and isotropic mater ia l ,  that its thermophysical  proper t ies  a re  independent of the t empera -  
ture,  that the buildup deformation of cut metal  occurs  within a narrow zone regarded as a flat t r iangular  
source of uniform intensity, that heat conduction paral le l  to the plane of this source is negligible, and that 
the nose angle of the cutting tool is 90 ~ . 

Under these assumptions,  the temperature  field of the contact zone OAB is described as 

1 0.56 Ki Vf-  ~ OK = ~ q- , (i) 

where O K = (T-T2)/(TI-T2), with the temperature in the zone of basic deformation T I and the temperature 
of the workpiece prior to entering the contact zone T 2, the Kirpichev number Ki, the Peclet number ]Per/, 
and the dimensionless space coordinate ~?. 

The solution is valid for Pe~? ~ 10. 

Calculations based on formula (1) show that, within the practical range of machining conditions, the 
temperature at individual points in the zone of buildup deformation may reach 700~ or higher and thus 
degrade the superficial layer of the workpiece with a resulting high wear rate at the built-up edge at the 

back of the tool. Such an appreciable tool wear the built-up 

) 

3 

Fig. 1. Schematic diagram of a con- 
s trained machining operation: 1) chip; 
2) workpiece; 3) tool. 

back edge in a machining configuration s imi lar  to the one shown 
here is often encountered in pract ice .  

The thermal  flux t ransmit ted f rom the zone of buildup de- 
formation to the workpiece is, in dimensionless form, 

.3 = T + 0.75 (1 - .1) pe~ cos ~ 

where ~1 denotes the dimensionless flux t ransmit ted to the work- 
piece f rom the zone of basic  deformation in cut metal,  e denotes 
the per  unit shear  in the zone of basic deformation, ~ denotes 
the limiting rake angle, and the Peclet  number Pe 2 is a function 
of the cutter speed v2. 

By a comparison between measured  and calculated values 
of thermal  flux t ransmit ted to the workpiece f rom the built-up 
cutting edge of the tool, this mathematical  model is shown to 
ref lect  the fundamental laws governing the heat t ransfer  f rom 
a chip to the workpiece within the zone of buildup deformation in 
cut metal .  

Original ar t icle  submitted May 6, 1971; abs t rac t  submitted March 10, 1972. 
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C O N C E R N I N G  T H E  

C O N D U C T I O N  A N D  

D U R I N G  H E A T I N G  

M E C H A N I S M  OF H E A T  

T t I E R M A L  E X P A N S I O N  

N. I. Niki tenko UDC 53.01:536.1 

According to the physical  model of the heat conduction p rocess  analyzed in [1], the energy E (above 
the reference  level) of par t ic les  in a body is proport ional  to the energy Q emitted by these par t ic les  per  
unit time: 

q=~ .  (1) 

On the basis of relation (1), an integrodifferential  equation of heat conduction is derived from which, 
as  special  cases ,  follow the Four ie r  equation and the hyperbolic equation describing high-ra te  heat t r ans -  
fer  p rocesses .  

The energy flux of c a r r i e r s  emitted by a par t ic le  exer ts  a p r e s su re  on other  par t ic les  in the body. 
This p r e s s u r e  is proport ional  to the energy flux Q and, therefore,  to the energy of par t ic les  E. Simple 
mathemat ical  operat ions yield a relation between thermal  s t r e s se s  and the temperature ,  as well as an 
express ion for  the thermal  expansivity in agreement  with Gruneisen 's  law. 

Relation (1) yields the basic  distribution laws of s tat is t ical  physics.  According to the concepts de- 
veloped in quantum mechanics,  par t ic les  of a body can emit energy in packets equal to or  multiples of a 
quantum hr. We find the probabil i ty WmN that a subsystem of N par t ic les  is at the energy level m and has 
the energy content EmN. If L N is the number of subsys tems containing N par t ic les  each, then LmN 
= LNWmN such subsys tems will be at the energy level m and will emit energy QmN = eLNWmNEmN per  
unit time. If a subsystem,  while emitting energy,  jumps to the zero level (m = 0), then BmN = QmN/EmN 
= eLNWmN subsys tems  will leave level m as a resul t  of energy emission.  

All par t ic les  of the sys tem emit  the total energy E c. It is distributed over the subsys tems in p ro -  
port ion to their  respect ive  absorption c ross  sections cr N. The subsystems of N par t ic les  at level m receive 

an energy QmN = eLNWmNEzaN/Cr, where o- = ~ LN~N, and, consequently, BmN = QmN/hv subsystems 
N 

will jump f rom level m to level m + 1. As a resul t  of the same process ,  Bm_ 1,N = Qm-I ,N/hv subsystems 
will jump from level m - 1  to level m. In this way, the number of subsystems at level m (eN = Ec~N/hV) 
becomes 

- - - =  1 + (2) dT Bin--1. N - -  BraN - -  Bran = eL,v  q~N Win-- l ,  N ~ W r e n  �9 

Solving Eq. (2) for sys tems  in equilibrium simultaneously with the equations of constant subsystems 
number and constant energy yields,  af ter  correspondence between stat ist ical  and thermodynamic quan- 
tities has been established, the canonical and the canonical in the large sense Gibbs distribution, followed 
by the Bose -E ins t e in  and the F e r m i - D i r a c  distr ibutions.  Fo r  a sys tem in equilibrium we have 

I (_ E~. 1 6~ wm~ v= ~ exp \ ~ ], m =0, I . . . . .  MN, M N = hv~v , (3) 

where 

~...= %.N(~+I)[,+M--U_--~_~ + W - ) % '  (l , -%] M N --~ N . 

a m N  = 1 for  m = 0, 1 . . . . .  MN-1;  and CNhVN = hVN/[ex p (hvN/kt) - I  ] is the mean energy of a subsystem 
containing N par t ic les .  When MN/~O N ~ oo Eq. (3) yields the Maxwell-Bol tzmaun distribution. 

The sign of Z in Eqs. (24) and (27) in the printed text is e r roneous .  

Institute of Engineering Thermophysics ,  Academy of Sciences of the Ukrainian SSR, Kiev. Original 
ar t ic le  submitted Februa ry  2, 1971; abs t rac t  submitted March 7, 1972. 
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L I T E R A T U R E  C I T E D  

N. I. Nikitenko, Teplofiz. Vys. Temp.,  6, No. 6 (1968). 

T R A N S I E N T  H E A T  C O N D U C T I O N  T H R O U G H  A 

T W O - L A Y E R  C Y L I N D E R  

M. Y a .  P e k a r s k i i ,  N. Y u .  T a i t s ,  
a n d  Z.  N. G o l o v i n a  

UDC 536.21 

In view of the complexity of the exact solution to the problem of heat conduction through a two-layer  
cylinder [1], its use for engineering calculations is very  difficult. Fo r  this reason,  an approximate solu- 
tion to this problem is considered with l inear  boundary conditions and with a uniform initial temperature  
distribution. The solution is obtained by the method of averaging the functional correc t ions  [2, 3]. The 
solution is given for the inert ial  and for the regular  p rocess  modes. According to this method, for  the 
inert ial  mode we let 

where 

ap ~ ap~ 

Pt 

~1(x) - -  P*--7 (x) , ~ p ap @; 
'~(-o 

Pl 0 

with the relative tempera ture  drop 0 i = ( T i - T m ) / ( T o - T  m) (i = 1, 2), the dimensionless time T = alh2t, the 
dimensionless  radius p = hr,  h = a / h  2, Ka = a 2 / a , ,  ki  is the thermal  conductivity, ai  is the thermal  dif- 
fusivity, a is the coefficient of external  heat t ransfer ,  t is the time, r is the radius,  T (t) is the depth of 
thermal  flux penetration, and r 0 is the length of the inert ial  period. The tempera tures  in the l ayers  are  
determined by the temperature  0 c in the contact zone: 

! 
1 Oc+ ~ ]~ 

o~ = l - ( t - o O  l -To , ( p -p , )  I--T:-6~c J ' 

_~[ (p-p:)( '-o~+p) ] '0~= (lq-p~--p)O c -  ~ , 
I -- p z  + Pl 

which is found f rom the equation 

Here 

(0 :== l+p~--pl ; K~=-~-I ; 

(p~ -- pl) [ 1+ -~  (Pa -- Pl)] 2 
1 - -  0 c ( % )  

Ka (1 -~-Ps --Pl) x0 

The length of the inert ial  period is determined f rom the expression 

l l 1 1 ~ . 

Original ar t ic le  submitted December  23, 1971; abs t rac t  submitted February  16, 1972. 
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where 

and then 

For  the regular  mode we let 

Pl P: ~* 
1 ~ 001 dp 1 002 

[}i(1:) ~ j ~ ; [$2 == Ka (p~--Pi) ('~*-- %) ,I' ,f = - - --~ @d,, 
0 Pt "Co 

01 = 1~ 2r176 ) O c +  291 ~ ,  

Oc+ ~ = [0~(%) --~- ~ (To) ] exp 1 

02 and ~ are  found f rom the respect ive express ions  for the inert ial  mode. 

A compar ison with the exact solution shows that this approximate solution is sufficiently accurate  for 
engineering purposes .  As an example,  the cooling of a cylindrical  ingot under the skin layer  is determined 
according to this method and the resul ts  indicate an appreciable effect of that layer  on the cooling p rocess .  

I~ 
2. 

3. 

L I T E R A T U R E  C I T E D  

A. V. Lykov, Theory of Heat Conduction [in Russian],  Vysshaya Shkola, Moscow (1967). 
Yu. D. Sokolov, Method of Averaging the Functional Correct ions  [in Russian], Naukova Dumka, Kiev 
(1967). 
Yu. S. Postol'nik, Izv. VUZ. Chernaya Metallurgiya,~No. 4, 152 (1968). 

S T E A D Y - S T A T E  T E M P E R A T U R E  F I E L D  O F  A 

R E C T A N G U L A R  P L A T E  W I T H  M I X E D  

B O U N D A R Y  C O N D I T I O N S  ON ONE S I D E  

E .  P .  T r o f i m o v  UDC 536.2.01 

In pract ica l  applications of thermophysics  there ar ise  problems of determining the temperature  fields 
of bodies with mixed boundary conditions at the reference  surface.  The well-known analytical methods of 
solving such problems are  difficult to use for specific cases,  because they reduce to a solution of infinite 
sys tems  of l inear  equations. The feasibili ty of solving such problems analytically without r e sor t ing  to in- 
finite sys tems  is shown here on the example of heat t ransmiss ion  through a rectangular  tetrahedron.  

The tempera ture  field of the te trahedron is descr ibed by the Laplace differential equation: 

o~-t (x, y \  § o~t (x, v) _ o, (1) 
Ox ~ Oy~ 

o.~ x.<. ~, - h~ .(.. y.<5.. ~ 
with mixed boundary conditions: 

t (x, - h,) - t, (2) 
t (x, h~) = t~, (3) 

All-Union Scientific-Research and Design-Engineering Institute of Complex Automation in the Oil arid 
Gas Industry. Original article submitted January 29, 1971; abstract submitted March 7, 1972. 
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F i g .  1.  T e m p e r a t u r e  f i e l d  of  a r e c t a n g u l a r  
p l a t e ,  d e t e r m i n e d  n u m e r i c a l l y  and  a n a l y t i c a l l y ;  
the  po in t s  r e p r e s e n t  v a l u e s  ob t a ined  by  the  
Monte  C a r l o  m e t h o d ,  the  s o l i d  l i n e s  r e p r e s e n t  
v a l u e s  a c c o r d i n g  to f o r m u l a s  (9) and  (10). 
C o o r d i n a t e s  x,  y ( c m ) ,  t e m p e r a t u r e  t CC) .  

at (o, v) _ o, (4) 
0x 

at(~,  y) =0,  - -  al . (  v .< 0, (5) 

t(~, y)=t~, O.<V.<h2. (6) 

Equat ion  (1) i s  s o l v e d  b y  m e a n s  of f in i te  i n t e g r a l  t r a n s f o r m a t i o n s  f o r  y > 0 and y < 0. The  unknown 
i n t e g r a t i o n  c o n s t a n t s  a r e  d e t e r m i n e d  f r o m  the  c o m p a t i b i l i t y  equa t ions  b y  e l i m i n a t i n g  one of the  two k e r n e l s  
in  the i n t e g r a l  t r a n s f o r m a t i o n :  

ci(0) - ~ -  + t ~ + - - ~  c1(olcos~x = t, + c~(,) cos ,x, (7) 

2 ~ _ 2_ X c,(~)~r r (8) C1(0) -E + ~ c~(a) oct h an, cos o~ = ~ , 

w h e r e  o- = ~ m / R ,  m = 0, 1, 2 . . . . .  v = 7r(2n + 1 ) /2R,  and n = 0, 1, 2 . . . .  

The  f ina l  so lu t i on  i s  
- a~ .<:.. v.c. o, 

] t--ATt---L h x + v - - "  (--l)m-v2__o------ ~ l+thvhlcthvh.z" sh(~h i t (x, y) = t 1 - -  hi f l  ~l/~ 

t l - - t~  2 "~ (--1)n thvhdv+gJl/~2 shv(h2--y) - -  cos vx; (10) 
t (x, y) = t~ + hl + ~1/~2 R ' ~  v 1 + th vhl r vh 2 sh vh~ 

2 ~ 1 th vh~ 
1 + th vh i cth vh~ 

~ = 1  Rz ~ ~2 l + t h v h  zcthv/~ " 

Th i s  so lu t ion  i s  c o m p a r e d  with the so lu t ion  to the s a m e  p r o b l e m  b y  s t a t i s t i c a l  t e s t s  (Monte C a r l o  
me thod) ;  the c o m p a r i s o n  i s  shown g r a p h i c a l l y .  Both s e t s  of v a l u e s  a g r e e  wi th in  the  a c c u r a c y  of  the 

n u m e r i c a l  me thod .  

t(x,  y) 
x , y  
R 

hi ,  h2 
t i ,  t2 
Cr~ 

m , n  

NOTATION 

i s  the t e m p e r a t u r e  of the r e c t a n g u l a r  p l a t e ;  
a r e  the c o o r d i n a t e s ;  
i s  the d i m e n s i o n  of  the p l a t e  on the x a x i s ;  
a r e  the d i m e n s i o n s  of the p l a t e  on the y a x i s ;  
a r e  the t e m p e r a t u r e s  on the b o u n d a r i e s  of the p l a t e ;  
a r e  the  s i g n i f i c a n c e  of  the  n u c l e a r  t r a n s f o r m a t i o n  i n t e g r a l ;  
a r e  the �9 of n a t u r a l  s e r i e s .  
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A P P R O X I M A T E  S O L U T I O N  TO T H E  

C O N S O L I D A T I O N  U N D E R  C R E E P  IN 

S O I L  B E D  

P R O B L E M  OF 

A S W E L L I N G  

A.  L .  G o l d i n  UDC 624.131 

The consolidation of a swelling soil is considered here in the V. A. Flor in  formulation of the p rob-  
lem, taking into account the rheological  p roper t i es  of the soil matr ix.  The consolidation equation, in con- 
ventional notation, 

02h (t)l O h ( t )  O~tt 
--a~ O# h?i(a~ ~ +7[a0+~'( l+em)]  Ot 2 

( 0~// 08H ) (1) 
+y71[ao+a l + ~ ' ( l + g m ) ] ~ t  H =k( l+em)  Vl' Oz 2 + OtOz 2 

is  solved for  the initial conditions 

Oh OH O~H 
H (z, 0) = 0, 0 < z < h0 and --a0Yi y -- a~'hTih + V [a0 + ~'(1 + ~m)] -~-  + a~ ,T I t=k  (l + e m) ~ (2) 

and the boundary conditions 

OH =0 ~or z=0.  (3) H = 0  for z = h (t), Oz 

Introducing the variable ~ = z/h(t) and applying the Four i e r  cosine t ransformat ion with finite l imits,  
we obtain for the image function Hn when h(t) = (~t + h 0 

h "a d~H--n d-Hn (at + ,) ~ + [a (at + ho)S + Cn (at + h0) ] ~ + cn[?l(at + ho) __ 2a] Ha + bn(at + ho)a = 0 (4) 

(a, b n, and c n depend on the calculated soil charac ter i s t ics ) .  The initial conditions for this equation are  
obtained f rom the initial conditions (2) af ter  a Four i e r  cosine t ransformation.  

A simplification of Eq. (4), with al assumed much smal le r  than a o and 2a assumed negligibly smal le r  
than 71(~t  + h0) at large values of t, yields the following approximate solution to Eq. (4): 

t z 
: Z , T Z 1) 2] d~; 1 dz ,  " n  , f e x p [ 7 1 ( z - t )  {Anexp[ - -~z+ m (2n + l)'] -- b n,rexp[ ('T-~rn z + m  ) (2n + j , (5) 

o o 
n = 0 ,  1, 2 . . . ,  

where m = h0/o~, while A n and 6 a re  determined f rom the soil charac te r i s t i cs .  

B. E. Bedeneev All-Union Scient i f ic-Research Institute of Water Engineering, Leningrad.  Original 
ar t ic le  submitted November 27, 1971; abs t rac t  submitted Februa ry  11, 1972. 
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The magnitude of the excess  head is found by an inverse Four i e r  cosine t ransformation.  

Formula  (5) was used for calculating the threshold p r e s s u r e  in a soil bed with the following p a r a m -  
e ters :  a0 = 5 .10  -3 cm2/kg, as = 2 �9 1 0  - 3  cm2/kg, T1 = 10-4 h-S, k = 10 -7 cm/sec ,  ~' = 5 .10  -~ cm2/kg, e m 
= 0.54, Ti = 2 tons /m 3, (~ = 0.275 m/24  h, and h 0 = 1 m. The maximum excess head was found to occur  
at point z = 0, 254 m for a bed 300 m high. The approximate solution did not deviate f rom the exact solu- 
tion by more  than 5-6%. 

I N T E R P O L A T I O N  M E T H O D  OF D E T E R M I N I N G  T H E  

T H E R M A L  C O N D U C T I V I T Y  OF  P H A S E S  IN A 

T W O - P H A S E  H E T E R O G E N E O U S  S Y S T E M  

V. S. V o l ' k e n s h t e i n ,  N. N. M e d v e d e v ,  
Z.  M. L e o n t ' e v a ,  a n d  S. A.  S h a l a t s k a y a  

UDC 536.2.083 

In the proposed method, glass balls (the sys tem matrix) with an unknown thermal  conductivity are  
placed success ively  in two liquids with known thermal  conductivities k l, k2 and the corresponding effective 

? ? 

thermal  eonductivities X s, ~t 2 a r e  measured  each time. When X s < k, then X~ < k; when X 2 > k, then 
' . k. The interpolation formula is X 2 > X By interpolation we find ~' = 

B 

X-  1--A ' (1) 

where 

A-- ~.~_;~i ' B=~I--Ak 1=k~-Ak~. 

Formula (i) applies when the relation k' = f(k) is linear. Experiments described in the article show that 

this condition applies, as long as k I and k 2 do not differ too' much from k. In order to determine the ther- 

mal conductivity of a liquid, one pours  that liquid (unknown thermal  conductivity k l) into the vesse l  with 
balls.  Having then measured  the effective thermal  conductivity of the system and knowing the values of A 
and B in Eq. (1) f rom the pre l iminary  calibration test, one finds the thermal  conductivity of the test  liquid 
by the formula 

x~ - -  B 
X~ - - -  (2) 

A 

We note that in this case the thermal  conductivity of the balls  mater ia l  does not have to be known. 

This method is par t icular ly  convenient for determining the thermal  conductivity of liquids. The 
main difficulty in that case is usually to eliminate the effects of convection and radiation. This makes it 
necessa ry  to pe r fo rm the measurements  on thin l ayers  and thus complicates  the experiment.  In the p r o -  
posed method, filling the interst i t ial  space between bails  in a sufficiently deep vesse l  does not resul t  in 
the formation of thick layers .  

The interpolation method was used by the authors for determining the thermal  conductivity of sugar  
solutions, spherical  solid spheres ,  and granular  mater ia l .  

Lensovet  Institute of Technology, Leningrad.  Original ar t ic le  submitted July 19, 1971; abs t rac t  
submitted Februa ry  24, 1972. 
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O V E R R A D I A T I O N  IN H I G H - T E M P E R A T U R E  

H E A T  E X C H A N G E R S  

F .  R .  S h k l y a r ,  M. I .  A g a f o n o v a ,  
a n d  V. M. M a l k i n  

UDC 536.27 

The effect of overradiat ion along the channel of a counterflow heat exchanger on the temperature  of 
flue gases and the chimney walls is evaluated here.  The problem is formulated as follows: a heat ex- 
changer consis ts  of c i r cu la r - sec t ion  channels with an infinite thermal  conductivity in the t ransverse  di- 
rect ions and a zero  thermal  conductivity lengthwise. Through some channels flows a "hot" heat ca r r i e r ,  
through other  channels flows cold a i r  in the opposite direct ion (recuperative heat exchanger).  

For  an analysis  of a regenerat ive heat exchanger,  we replace the lat ter  by an equivalent recupera tor .  

Heat is t ransmit ted f rom the hot gas to the wall and f rom there to the cold gas by convection (radia- 
tion f rom the gas is lumped into the heat t ransfer  coefficient). The sys tem of equations which descr ibes  
the tempera ture  field of the heat exchanger includes the equation of heat balance for "hot" and "cold" gases 
in a channel element and the equation of heat t r ans fe r  at the wall, the lat ter  equation taking into account 
radiation fluxes f rom all channel segments  and f rom the space below as well as above the chimney. The 
boundary conditions in the problem stipulate the gas tempera ture  at the channel entrances .  

The equations were treated in the f ini te-difference approximation with gas temperature  at the ends 
of the channel element assumed known and the wall tempera ture  assumed equal to the mean. 

Radiation t e rms  in the equation were averaged over  the channel element. The problem was solved 
by interpolation with respec t  to a radiation te rm and by the Newton method in the boundary-value stage. 
An appropriate  p r o g r a m  had been set up for  using a "Minsk-22" digital computer.  

In o rde r  to improve the convergence at large values of the radiation term,  the authors applied the 
"damping" method with a following temperature  approximation used only for establishing the sense and 
the magnitude of tempera ture  changes and with the radiation te rm calculated accordingly f rom the co r -  
rected tempera ture  field in t e rms  of the respect ive  preceding approximation. 

Calculations were made for chimneys of b las t - furnace  a i r  heaters .  According to these calculations, 
overradiat ion resul ts  in a r i se  of both the a i r  tempera ture  and the smoke temperature .  The apparent 
heat deficit is wiped out by a source associa ted  with overradiat ion.  Overradiat ion ra ises  the tempera ture  
of both gases  and of the chimney along the entire height of the heat exchanger and, if both gases  have the 
same water  equivalent, the tempera ture  distribution along the chimney height becomes nonlinear with the 
knee of the curve toward higher tempera tures .  

An analysis  of the resul ts  has shown that at smoke tempera tures  up to 1500~ in long channels (over 
500 d iameters  long) the effect of radiation on the temperature  field is small.  As the blast  t empera ture  
( temperature of the flue gases  at the chimney entrance) r i ses ,  the effect of radiation becomes  more  appre-  
ciable and must  be considered in the selection of chimney mater ia ls .  

All-Union Scient i f ic-Research Institute of Metallurgical Heat Engineering, Sverdlovsk. Original 
ar t ic le  submitted August 12, 1971; abs t rac t  submitted March 21, 1972. 
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ANALYSIS OF TEMPERATURE FIELDS AND 

STRESSES IN THE REGULAR MODE 

Yu. P. K o t e l ' n i k o v  

T H E R M A L  

UDC 536.12:539.319 

It has  been  shown in [1, 2] that  heat ing of  bodies  with in te rna l  heat  s o u r c e s  will  p r o c e e d  in the r e g u -  
l a r  mode,  if the t e m p e r a t u r e  is r e a d  re l a t ive  to i ts  s t e a d y - s t a t e  level .  

Such a method  of r e g u l a r i z a t i o n  is  adopted h e r e  to the case  of a hollow cy l inder  whose both s u r f a c e s ,  
ins ide and outs ide ,  pa r t i c ipa t e  in heat  t r a n s f e r  unde r  mixed  boundary  condi t ions  of  the th i rd  kind. By a 
modi f i ca t ion  of the in teg ra l  method,  a solut ion is obtained which involves  the m i n i m u m  n u m b e r  of d imen-  
s ion less  p a r a m e t e r s  and, at  the s a m e  t ime,  appl ies  to t r ans i en t  heat ing of  the cy l inder  f r o m  e i the r  inside 
o r  outs ide  as  well  [3]. 

This  solut ion m a k e s  it poss ib le  to extend wel l -known re l a t ions  appl icable  to the r e g u l a r  heat ing mode 
a l so  to t h e r m a l  s t r e s s e s  and to r e p r e s e n t  those r e l a t ions  in an expl ic i t  ana ly t ica l  f o r m  convenient  fo r  
p r a c t i c a l  use :  

1. Dur ing  the r e g u l a r  s tage of heat  t r a n s f e r ,  the l o g a r i t h m  of the d i m e n s i o n l e s s  t e m p e r a t u r e  0 and 
the l oga r i t hm of  d i m e n s i o n l e s s  t h e r m a l  s t r e s s e s  H both change at the s a m e  r a t e  at  al l  points ,  this r a t e  
r ema in ing  cons tant  in t ime:  

Oln0"~ 01nh" M, 
O Fo O Fo 

where  M denotes  the d imens ion le s s  hea t  t r a n s f e r  r a t e  
M =  12 [2Bia ~ (2 -"- ~) BiaBip + 2 (1 "+- ~ Bip] -; 

12 (2 -~ o) -~- (8 + 5o) Bi~ -}- (2 --[- co) BiaBip+(8 -l- 3~) Bip 
~}= T=--7" (l--~t) . 

+ - r - - - - - ? ;  ~ - ~ .  --o) to,| - or); 

and w is an ind ica tor  of the wail  cu rva tu r e .  

A re la t ion  be tween  the r a t e  of  change of  M and the K o n d r a t ' e v  n u m b e r  is de r ived  for  the given cy l in -  
de r  with a doub ly -connec ted  su r face .  

2. F o r  any two points  on the cy l ind r i ca l  wall  (~r '  ~?s ) the ra t io  of d imens ion l e s s  t e m p e r a t u r e s  fl and 
the ra t io  of d imens ion l e s s  t h e r m a l  s t r e s s e s  "y in the r e g u l a r  mode  r e m a i n  invar iab le :  

~'r 2 + Bip-k- (2 -}- Bip) Bidqr--(Bia-k-BiaBip+Bip~~r 
~rs = - -  ~ '  ~ coast .  

~s 2 "~- Bip'-b (2"~ Bip) Bia~I' -- (Bia'Jc BiaBIp-b Bip ) ~ 

The ra t io  of t h e r m a l  s t r e s s e s  on the s u r f a c e s  of a hol low cy l inder  is  

/in (8 -~- 5o) Bin -k- (2 -b co) BiaBip -- (4 n t- 3<0) Bip = coast. 
~ap = ~ ---- -- (4 -}- co) Bin -- (2 -}- co) BiaBi p-- (8 -~- 3~) Bip 

3. The time till the same dimensionless temperature and equal in magnitude thermal stresses are 

established at any two points of a hollow cylinder during the regular heating stage remains invariable: 

Fo (nr; O) - -  Fo (%; 0 ) = In [3,s,  
M 

i Fo O]r; [/t[) -- Fo (~;l HI) -- InTrs 
M 

The re l a t ions  de r ived  h e r e  s impl i fy  the solut ion of eng ineer ing  p r o b l e m s  and the ana lys i s  of  t h e r m a l  
s t r e s s e s .  

1 .  

2. 
3. 
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G. N. Dul 'nev  and G. M. K o n d r a t ' e v ,  Izv. Akad.  Nauk SSSR, Otd. Tekh.  Nauk, No. 7 (1956). 
A. V. Lykov,  T h e o r y  of Heat  Conduct ion [in Russ ian] ,  Vysshaya  Shkola, Moscow (1967). 
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Or ig ina l  a r t i c l e  submi t ted  Augus t  18, 1970; a b s t r a c t  submi t ted  M a r c h  27, 1972. 
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E X P E R I M E N T A L  D E T E R M I N A T I O N  OF T H E  W E T - B U L B  

T E M P E R A T U R E  IN H I G H - T E M P E R A T U R E  G A S E S *  

E .  N.  B u k h a r k i n  UDC 536.248.2 

During contact with a gas, water  can be heated up to the wet-bulb tempera ture  t M at which the sen- 
sible heat f rom the gas to the liquid and the latent heat of evaporation f rom the liquid to the gas are  in a 
dynamic equilibrium. It is usually assumed for water  [1, 2] that t M is equal to the temperature  of adia- 
batic saturation t", i .e . ,  the tempera ture  of static equilibrium between gas and water  after  the p roces se s  
of heat and mass  t ransfer  have been completed. 

It has been established experimental ly  that t M and t" are  identical at moderate  gas tempera tures  
(50-300~ [1, 2]. At high gas tempera tures  no such correspondence between t M and t" could be confirmed 
experimentally.  At the same time, with the gas pa r ame te r s  fixed, t M depends on the t read of the h - s  
d iagram (Appendix 1), which is determined by the rat io o~/fl, and is general ly not equal to t" [3]. 

The problem of determining t M is important  in prac t ica l  applications (e. g., heating a liquid by con- 
tact with a gas). Thus, t M is determined here  for the case of contact between water  and a h igh- tempera-  
ture gas. The design of the test  apparatus and the test procedure  have been descr ibed ea r l i e r  in [4]. 

The experiment  was per formed in the following manner:  the contact column was flooded with water  
at a tempera ture  equal to t" of gases  entering that column. The water temperature  was measured  along 
the height of the column, including its lower section. The appropriate  gas p a r a m e t e r s  were regulated by 
an admixture of a tmospher ic  air .  

The experiment  has shown that t M and t" are  a lmost  equal (within 0.1~ within the 240-1030~ tem-  
pera ture  range and the 0.3-1.2 m / s e c  velocity range. 

E Q U I L I B R I U M  M O I S T U R E  C O N T E N T  IN 

Z I N C  T E T R A O X Y C H R O M A T E t  

A.  G. B o l ' s h a k o v  a n d  E .  V. S t e p a n o v a  UDC 66.047.1:667.622.1 

The sorption equilibrium in zinc te t raoxychromate  was studied at t empera tures  f rom 293 to 368~ 
and a relat ive humidity of a i r  ~ over  the 0.1-0.9 range. Zinc te t raoxychromate  5ZnO. CrO 3 �9 4H20 is an 
inorganic pigment included in high-quality protect ive p r imer  coatings. It is obtained by a synthesis of 
zinc oxide ZnO emulsion in water  and chromic  acid H2CrO 4 solution at a 333~ temperature .  For  this 
study the authors  used zinc te t raoxychromate  paste f rom an industrial  r eac to r  vat with an initial mois ture  
content 2607o ( refer red  to dry  weight). The absolute dry  weight of the mater ia l  was determined after  a 
measured  specimen had been dried at a tempera ture  T = 378 • 2~ in the presence  of P205, whereupon its 
chemical  composition was established by volumetr ic  analysis.  The chemical  content was found to be: 
70.5 + 0.5% ZnO, 17.8 :e 0.1% CrO3, 11.7% 4H20 (hydration moisture) .  The percent  mois ture  content at 
equilibrium was measured  in percent  of dry weight. 

The equilibrium function f(up, ~, T) = 0 was explicated by an experimental  determination of desorp-  
lion i so therms for the given mater ia l .  Sorption equilibrium was reached in an apparatus combining the 
principles  of c lass ical  and dynamic test  p rocedures ,  as shown in Fig. 1. The essential  components of this 

�9 Original ar t ic le  submitted October 11, 1971; abs t rac t  submitted April  3, 1972. 
Odessa Polytechnica Institute, Odessa. Original ar t ic le  submitted October 25, 1971; abs t rac t  sub- 

mitted March 29, 1972. 
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Fig. 1. Schematic diagram of the test  apparatus f o r  determining the desorptiou i so therms for zin( 
te t raoxychromate.  

apparatus were: an exsiccator  11 covered hermet ical ly  with a lid 15, a dc e lectr ic  motor  8, a rect i f ier  
14, an impel ler  6, an insulation box 2 ,  a thermosta t  j a r  3 containing a heater  coil 7, a pump 13, a contact 
the rmomete r  1, the rmomete rs  4 and 10, a vesse l  with H2SO 4 solution 9, and pillboxes containing the test  
mater ia l .  

The study covered also the effect of temperature  on the stability of hydration moisture .  It has been 
found that the hydration moisture  is heat res is tant  up to T = 523~ and does not affect the equilibrium 
mois ture  content. 

A family of desorption isotherms (T = 293, 308, 323, 348, 368~ has been plotted for zinc te t raoxy-  
chromate on the basis  of both test data and calculations. An analysis  of these S-shaped curves indicates 
that this mater ia l  is a capi l lary-porous  colloid. Its bonded mois ture  amounts to approximately 3.2%. Mois- 
ture with different types of bond to the dry zinc te t raoxychromate  matr ix  appears in following percentages:  
42% hydration moisture ,  31.5% monomolecular  adsorption moixture,  20% purely polymolecular  adsorption 
mois ture ,  25% part ial ly polymolecular  adsorption and part ial ly capil lary condensation moisture,  and 
18.8% moisture  held by osmotic and wetting forces.  This analysis  indicates that moisture  held by a strong 
bond, namely hydration and monomolecular  adsorption moisture ,  constitutes over one-half  (56%) of all 
bonded moisture .  

The following empir ical  equation descr ibes  approximately the field of equilibrium mois ture  contents 
represented by the family of i so therms:  

up = 21.Sr--~ ~ (1) 

where q~ is expressed in fract ions of unity. This formula,  which contains three constants,  yields, with a 
mean e r r o r  of :el.6%, the equilibrium mois ture  content in zinc te t raoxychromate  over a wide range of 
var iables  covered in the tests:  0.1 ~ (p -< 0.93 and 293~ - T <- 368~ The pa rame te r s  in this empir ical  
relation have been evaluated by the method of least  squares.  
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S T U D Y  O F  G A S  D Y N A M I C S  I N  V O R T E X  C H A M B E R S  

E .  P .  S u k h o v i c h  UDC 533.697 

R o t a t i o n a l  m o t i o n  of an  i n c o m p r e s s i b l e  v i s c o u s  f lu id  in v o r t e x  c h a m b e r s  i s  a n a l y z e d  u n d e r  t u rbu l en t  
f low cond i t i ons .  In o r d e r  to d e s c r i b e  the v o r t e x  h y d r o d y n a m i c s ,  the s t r e a m  i n s i d e  the c h a m b e r  is  t e n t a -  
t i v e l y  d iv ided  into four  zones :  1) j e t  f low n e a r  the l a t e r a l  c y l i n d e r  s u r f a c e ,  2) m a i n s t r e a m ,  3) b o u n d a r y  
l a y e r s  a t  the end w a l l s ,  and 4) r e g i o n  a r o u n d  the c y l i n d e r  a x i s .  

The e n e r g y  l o s s  in the j e t ,  w h e r e  a v o r t e x  i s  g e n e r a t e d ,  i s  c a l c u l a t e d  by  an a p p r o x i m a t e  m e t h o d  on 
the  b a s i s  of the law of  m o m e n t u m  c o n s e r v a t i o n  a p p l i e d  to th is  zone .  The  equa t ion  of m o t i o n  fo r  the m a i n -  
s t r e a m  and the equa t ion  of  the b o u n d a r y  l a y e r s  a t  the end w a l l s  a r e  so lved  s i m u l t a n e o u s l y .  On the b a s i s  of 
th is  so lu t ion ,  a me thod  i s  then d e v e l o p e d  f o r  c a l c u l a t i n g  the v e l o c i t y  f i e ld  and the p r e s s u r e  f i e ld  in the 
m a i n s t r e a m  and in the b o u n d a r y  l a y e r s  a t  the end w a l l s .  The e x p r e s s i o n s  fo r  the t a nge n t i a l  componen t  of 
v e l o c i t y  and fo r  the  s t a t i c  p r e s s u r e  in  the p e r i p h e r a l  zone a r e :  

v Ro v Ro 
1"1 

vin r r ! + A  ~--- 
. / %  

, .o for 
o.sp.  n .... n + . .  1 ../ 

P Po - -  e2R~ -r - -  2~;~ , 413A2 In r 

0.Spv~n 0-5pv#n. ~'a2 r~ (I, -~- A Ro] ( rl ~ ~ r, [ l - } -  A'-~-(/%- ~-o ) I t  

- -  A 3 - -  _ _  
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A == 
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T h e s e  a n s w e r s  w e r e  v e r i f i e d  e x p e r i m e n t a l l y  in c o a x i a l  v o r t e x  c h a m b e r s ,  in v o r t e x  c h a m b e r s  with 
gas  d i s c h a r g i n g  th rough  o r i f i c e s  in the end w a l l s ,  and in v o r t e x  c h a m b e r s  with a s ing le  i n l e t  s l o t  and gas  
i n j ec t ion  t a n g e n t i a l l y  t h rough  o r i f i c e s  d i s t r i b u t e d  a r o u n d  the s u r f a c e  of  the o u t e r  c y l i n d e r .  The t e s t s  i n -  
c luded  m e a s u r e m e n t s  of the v e l o c i t y  f i e ld  and the p r e s s u r e  f i e ld  in the m a i n s t r e a m ,  in the b o u n d a r y  l a y e r s  
a t  the end w a l l s ,  and a t  the l a t e r a l  c y l i n d e r  s u r f a c e .  T h e s e  m e a s u r e m e n t s  have shown that  a t  the end w a l l s  
in v o r t e x  c h a m b e r s  t h e r e  a p p e a r  r a d i a l  s e c o n d a r y  c u r r e n t s  which  a p p r e c i a b l y  a f f ec t  the v o r t e x  h y d r o d y -  
n a m i c s .  A n a l y t i c a l  s o l u t i o n s  b a s e d  on a t w o - d i m e n s i o n a l  f low m o d e l  which a c c o u n t s  fo r  the i n t e r a c t i o n  b e -  
tween m a i n s t r e a m  and b o u n d a r y  l a y e r s  a g r e e  c l o s e l y  with t e s t  da t a  and can  be  u s e d  fo r  c a l c u l a t i n g  the 
v e l o c i t i e s  and the p r e s s u r e s  in v o r t e x  c h a m b e r s .  

Institute of PhYsics, Academy of Sciences of the Latvian SSR, Riga. 
December 28, 1970; abstract submitted March 27, 1972. 
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NOTATION 

R o 

r0 
h 

l0 
V i n  

V0 
U0 
8 

r 

rl 

P 
P 

Fin 
(Vmax)o 
a i = 4.93; 

is the radius Of the vortex chamber;  
m the radius of the outlet orif ice;  
is the height of the inlet slot; 
is the length of the vortex chamber;  
is the m e a n - o v e r - t h e - m a s s  velocity at the inlet slot; 
is the tangential Component of the inlet velocity; 
m the radial  component of the inlet velocity; 
is the velocity maintenance factor;  
is the radial  coordinate; 
is the radius at which the radial spilt current  through the boundary layers  at the end walls be-  
comes equal to the rate of gas flow through the chamber;  
is the density; 
is the static p res su re ;  
is the kinematic viscosi ty;  
is the total c ross  section a rea  of the inlet slot; 
is the maximum inlet velocity; 

a 4 = 0.269; 
c 1 = 0.02255. 

1346 


