ABSTRACTS

A GRAPHICOANALYTICAL METHOD OF ESTIMATING
THE EFFICIENCY OF FINITE-PERMEABILITY
SORBENT DESIGNS*

G. L. Saksaganskii UDC 621.53

In order to cope with problems concerning technically and economically optimized designs of suction
devices with sorbent walls (cryosorption and cryogenic devices, various modifications of built-in discharge
pumps, ete.), which are used more widely now in modern electrophysical apparatus construction, a
graphicoanalytical method has been developed for estimating the performance of such devices at the user's
plant. It is shown that the effective suction rate of a device with sorbent walls of an arbitrary profile and
with a specific rate S; can be expressed as '

8 = aSps, (1)

where « is the reduction factor determined by the geometry of the sorption system and depending on the
specific suction rate of the device as well as on the temperature and the molecular weight of the pumped
gas, while Syx is the apparent suction rate of the sorption system, equal to the specific rate times of the
sorbent surface area. Formulas are derived for the reduction factor of systems with a circular, a square,
and a rectangular profile.

A table lists values of S, for cryogenic, cryosorptive, and magnetic-discharge suction systems
operating on various different gases. The reduction factor is calculated and plotted as a function of the
length~to-characteristic-dimension ratio for hydrogen, helium, methane, water vapor, and carbon di-
oxide at 4, 20, 77, 293, and 700°K. The specific rate has been selected as the parameter, its value rang-
ing from 0.005 to 50 liters/em? - sec, to cover the entire gamut of modern suction devices. The graphs
show comprehensively the interrelation between the geometry and the vacuum characteristics on the one
hand and the effective suction rate of a sorption system on the other.

Using the proposed method will simplify the design and the comparative evaluation of suction devices
with sorbent walls.

A PARTICULAR MIXED PROBLEM IN CONVECTIVE
MASS TRANSFERTY

A. T. Chub UDC 542.63:628.38

A diffusion device is considered here where the converter element consists of two equally long co-
axial cylinder-electrodes with opposite polarities. The cathode radius at the base ry is smaller than the

*Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 23, No. 4, pp. 743-763, October, 1972. Orig~-
inal article submitted May 26, 1971; abstract submitted February 7. 1972.
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respective anode radius ry, i.e., ry < ry. The density of the input current between the electrodes is as-
sumed to be a function of z only. Assuming further that the operating requirements usually stipulated for
chemotronic applications of .such devices are met, the author defines the problem as that of determining
the output current of the device when the latter operates in the mode of limiting diffusion curreat. '

It can be shown that the conventional method of determining the output current from the known con-
centration of reduced electrolyte according to Fick's law will lead to considerable mathematical difficul-
ties here. On the other hand, the problem here is definable as one of mixed boundary values for the dif-
ferential equation of convective diffusion and it can, by means of a special kind integral transformation,
be converted into another boundary-value problem admitting an exact solution for a large class of func-
tions in both the boundary condition and the initial condition. The requirement is that these functions
must be expandable into series with respect to the eigenfunctions Ry(Ar) of the boundary-value problem
dR

1
R 4~—R +MR=0, R(r)=
; dr

r==rz =0,

which is possible with almost all functions encountered in the theory of electrochemical converters.

The function which describes the sought output current must satisfy the equation

Y_p( LT, 20, o
r or 6)2)

Y -l-"r--l—f(f. £)

and the additional conditions

u
O Jy=r, =U(r, 1) =0, £ >0,

U, 0) =v(r).
The formula for the output current becomes, in this notation,
w0 H CJ .
fout () = 20rkFD{ + s { [ [am+ b ()] exp [ — 20D (¢ — )] d | R (o) + 3, B exp (— 2DRG (hry) |
| m==1 ] m=1
where F is the Faraday constant, D is the diffusivity, and

am = Dp H Ry (hmr}vffll—z ’:f Ry (hnE)dE,
bm® =| R G V7 || 5 F@& 1) Rofta) 85,

o= Re ) V7 || 35” (5) Ry (hf) 2.

DETERMINING THE THERMOPHYSICAL PROPERTIES OF
FLUIDS BY THE DIFFERENTIAL METHOD

N. N. Medvedev and G. V. Grishchenko UDC 536.2.083

The laboratory apparatus and the test procedure have been described in [1]. In differential methods
[1] the test specimen and the standard specimen are placed under the same conditions. This eliminates
some measurement errors due to thermal contact resistances, partial heat losses, insufficient heater
power, etc.

Lensovet Institute of Technology, Leningrad. Original article submitted July 16, 1971; abstract
submitted March 20, 1972,
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The theory behind this method is based on the equation

I+~ 1 .
P oz e e e e s s f (e g), (1)
0 erfcy - -acrfe 3y - m2%éric 5y — . . .

where
e- 1 X ) kg h (2)

[ R = st =Ty Y e T
£ | BY « Vay ' 2V at

Applying expressions (2) to the standard specimen and to the test specimen of equal thicknesses h at the
same instant of time 7, we obtain

T e e (3)
A A R
The value of ratio y'/y" for fixed values of ' and 8" completely determines parameters £ and y'.

An analysis of Eq. (1) indicates that for y = 0.7 the function of two variables P = f(«, y) becomes a
function of one variable P = f(y), accurately within 0.5-1.0%, i.e., Eq. (1) becomes
o 1
ke L 4
k 0 erfe y Ho. 4

In this way, the rigorous equation (1) can be tabulated in two stages:
1) P = f(y) in the interval 0.7 = y < «;
2) P =f(a, y) for the interval 0 < y < 0.7.

Unlike the method shown earlier in [1], this method yields the thermophysical properties for the case
a p # 0 without any simplifying assumptions. With an appropriate choice of material for the thermoreceiver
B for the standard specimen A, one can determine the thermophysical properties of solid, liquid, and loose
substances according to the single formula (4). The values of erfc y = 1—erf y can be picked from tables
of the probability integral.

Using a known value of a5, one finds Py = ~(1 + a5}0 for various values of 64 and, subsequently,
also the values of yz necessary for the calculation of the thermophysical properties. If the numerical
value of Pp does not appear in the first table, then it must appear in the second table P = f(a, y) and it
will determine the value of y corresponding to the given values of a A and 4.

After that, the test data are further processed according to the procedure given in [1].
P =1f(y) and P = f(a, y) tables for practical use are included in the article, also the thermophysical
properties obtained by this method for polyethers and aqueous syrup solutions.
NOTATION

A, Apg are the thermal conductivities of the test material and of the thermoreceiver, respectively;
a, ap are the thermal diffusivities of the test material and of the thermoreceiver, respectively;
b is the thermal activity of the thermoreceiver.

LITERATURE CITED
1. N. N. Medvedev, Inzh.-Fiz. Zh., 20, No. 2 (1971).
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HEAT AND MASS TRANSFER DURING
AIR-AND-EVAPORATION COOLING OF A
CYLINDER IN AN ANNULAR CHANNEL

A. G. Beinusov, A. N. Khoze, UDC 536.242:532.529.5
and E. K. Yadrikhinskii

One possible method of air~and-evaporation cooling a cylinder in an annular channel [1] is con-
sidered, with simultaneous axial injection of air and wetting the lateral surface by a liquid.

A hydrodynamic analysis of this process shows that, while the liquid film here flows in the laminar
mode, the two-phase mainstream can either be vortex-free or contain Taylor vortices. A chart of main-
stream flow modes indicates the various characteristic regions.

With the aid of these results, an analysis of heat and mass transfer within each region is based on a
structural procedure of determining the total thermal flux density

Ge =9 conv -+ qevap+ q sep’

where the components of thermal flux density are ggopy (convection), deyap (evaporation), and ggep (sepa-
ration).

It is assumed here that in this case qeony 2nd geyap can be calculated on the basis of the analogy be-
tween heat and mass transfer, while ggep will be regarded as the remainder term in Eq. (1).

Thus, the problem has been reduced to setting up an algorithm for the calculation of qpoyy and devap:
based on known similarity laws of heat transfer during the flow of a homogeneous fluid in geometrically
similar channels. '

The basic layout of the test apparatus is described, including the rotating cylinder inside made of
glass-fiber tubing with a two-layer printed-circuit heater coil mounted rigidly around its outside surface.

The test results are shown in the form of qp = f(ty,) relations, with ty denoting the mean wall tem-
perature of the rotating cylinder.

An analysis of test results covers two ranges. Within one range the measured and the calculated
values of qf agree within £10%. Within the other range, at higher wall temperatures, the calculated values
differ from the measured ones, namely: dg ,q1c > 9E test:

The discrepancy between qg tegt and qE cale €an, according to this study, be explained by the exist-
ence of dry regions on the active rotating cylinder surface. A correction of calculated values by a cover-
age factor will ensure an agreement, within +20%, between calculated and measured values.

The tests were performed within the following ranges of parameters: 10? = Ta =< 35-10%, 10> < Re"
=7.8-10% 0.024 =b/r < 0.24, g' < 35-10"% kg/m?- sec, and qg < 75 kW/m?,

NOTATION
Ta = worb%/v"2  is the Taylor number; ‘
Re = 2wgb/v"  is the Reynolds number;
wo is the referred velocity of the gaseous phase, m/sec;
b is the width of the annular gap, m;
w is the angular velocity, sec™l;
T is the inside radius of the cylinder, m;
g' is the specific flow rate of liquid, kg/m? - sec.

Superscripts

! denotes gas;
" denotes liquid.

Institute of Electrical Engineering, Novosibirsk. Original article submitted May 6, 1971; abstract
submitted March 13, 1972,
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DETERMINING THE THERMAL RESISTANCE DURING
HEAT AND MASS TRANSFER BETWEEN WATER
AND AIR

V. P. Alekseev and A. V. Doroshenko UDC 621.175.3

Merkel's method of the enthalpy potential is used widely in the analysis of simultaneously occurring
heat and mass transfer processes in a water—air system:

dQy = dQy + dQy = Gdig = Weydty, =B, (igy — ic) dF. (1)
with the thermal resistance of the water film
dQz = P2 (igg — iG)dF = ay, (ty, — fg) dF. (2)
taken into account.

On the basis of the two-films theory, an equation is derived here relating the total thermal resistance
of the system with the component resistances of air film and water film:
1/FBx = UFR) + mFay,. (3)

Equation (3) is valid for evaporation and condensation in the gien system. It is noted that coeffi-
cients aw and Bx can be found graphico-analytically by the Mickley—Mizushina method of stepwise curve
plotting {1-2].

NOTATION
G, W are the flow rate of air and water, respectively;
Qx» Qg Q are the total heat transferred, sensible heat, and latent heat, respectively;

hg, hgw, hGg are the enthalpy of air in the mainstream, of air at tG =ty and ¢g = 1, and of air at
tg = tg and @G =1, respectively;

tg: tw, tg are the temperature of air, of water, and at the mterface respectively;

aw is the coefficient of heat transfer in the liquid film;

Bx is the overall mass transfer coefficient (under the enthalpy difference as the motive
. force in the process);

Bx is the coefficient of mass transfer in the air film;

F is the area of transfer surface.

LITERATURE CITED

1. H. 8. Mickley, Chem. Eng. Prog., 45, 739 (1949).
2. T. Mizushina and T. Kotoo, Kagakukikai, 13, 75 (1949).

Engineering Institute of the Refrigeration Industry, Odessa. Original article submitted April 28,
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DETERMINATION OF CRITERIAL NUMBERS
DESCRIBING THE E¥FECT OF MASS
TRANSFER ON THE HEAT TRANSFER RATE
IN S_UBMERSED—COMBUSTION APPARATUS

A, N. Alabovskii UDC 536.25

When agueous solutions of nonvolatile substances are evaporating in submersed-combustion appara~
tus, then the heat transfer from the flue gases to the liquid surface is accompanied by a transport of vapor
toward the gaseous phase. It is suggested that in such cases the effect of mass transfer on the heat trans-
fer be evaluated in terms of dimensionless groups Tig = Ap/p, £g = pg/P, and Prpy [1]. At the same time,
this effect is also described by the Gukhman number [2].

An analysis of the differential equations and of the boundary conditions has shown that, in the general
case of nonadiabatic evaporation of a liquid, the criterial equation of heat transfer should contain not only
the IIg, &g, and Prp numbers, but also the number K = r/cAt. In the special case of evaporating aqueous
solutions, this number may be replaced by the temperature factor T/Ty,. In order to establish the sig-
nificance of these numbers, an experimental study was made on a laboratory model of a submersed-com-~
bustion apparatus. The test results are generalized by the equation:

oF ~ 60,3 8-60,54 ng0,17.

With a constant submersion depth of the bubble chamber and a constant flow rate of bubbhng gases,
it is permissible to disregard changes in the surface area of the interphase boundary.

NOTATION

a is the heat transfer coefficient;

F is the surface area of interphase boundary;

P is the total pressure of flue gases;

PG is the partial pressure of dry components;

Ap is the difference between partial pressures of water vapor;
Ty, 1is the absolute temperature of liquid in the apparatus;

Tg  is the absolute pressure of flue gases;

T is the heat of evaporation;

c is the specific heat of flue gases.

LITERATURE CITED

1. L. D. Berman, Zh. Tekh. Fiz., 28, No. 11 (1958).
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SOLUTION OF THE EQUATION OF HEAT TRANSFER
IN THE ANNULAR SPACE OF A ROTATING MUFFLE
FURNACE BY THE N. K. KULIKOV METHOD

E. I. Trebukhin UDC 536.24:669.041

The process of heat transfer in the annular space of a muffle furnace is described by the equation

dy
= oyt — by
PP Y Y-+ ¢

with the initial conditions xy = 0 and y, = 1.

In most cases one must know the temperature of gases only at the exit from the aggregate, i.e., ata
single point. Therefore, it is worthwhile to solve the equation by the N. K. Kulikov method. This method
of solution, which is outstanding in its simplicity, yields highly accurate results already in the zeroth
approximation.

Replacing x by its end value xg, we obtain the following solution to the original equation in the zeroth
approximation:

b—c
y(xp) =1 _atb=c [exhh ) —‘

A (xp)

Parameter A can be approximated by the mean value of function 8F (x, y)/9y within the region G. For
this particular equation, F(x, t) = —ay’~by.

Oun the basis of physical considerations, the maximum value of function y is in all cases equal to
unity and its minimum value may be taken as equal to 1/2. Thus, the mean value of A for the entire inter-
val can be represented as

A:p:-——b—225 a.
The solution in the zeroth approximation on the x-interval from 0 to 1 will then be

a_‘—_bti (€ — 1.
P

gy =1—
This solution is extremely simple and can be recommended for rough calculations. The error in de-
termining the temperature of flue gases does not exceed 6%.

Parameter A, as a function of xo, can be determined more precisely on the basis of the mean-value
theorem for a differential equation. With the designations

b— —
A=I+a+ c;B=‘a+b c’
P

we obtain the final expression

l(xk)=—b——4a,43——~—4£—~—- 25 EQQ_pxi-_—_l
(pxp— 1) exp pxp4-1 2

2 - 3 —1
~(exppxh-1)] + 3/123 [ expB;;xh L (exp pxp— 1) :l-%%’{ﬂfﬁ’_—‘_(exl’ﬁxk‘ 1)}}.

In this particular case the error at the center of the x-interval from 0 to 1 does not exceed 1%, and
at Xxg = 1 the temperature of flue gases is determined almost exactly.

NOTATION
X is the dimensionless length of the muffle furnace;
y is the dimensionless temperature of flue gases;

a, b, ¢ are the dimensionless parameters, constant for a given operating mode and determined on the
basis of the thermal design of the aggregate.

Novosibirsk Polytechnic Institute, Novosibirsk. Original article submitted June 10, 1971; abstract
submitted March 16, 1972.
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HEAT TRANSFER BETWEEN MOVING BODIES IN
CONTACT DURING METAL MACHINING

Yu. P. Rasputin UDC 536.4

The problem is to determine the temperature field of the deformation zone OAB in cut metal (Fig. 1),
across which heat transfer between a moving chip and the moving workpiece occurs during a machining
operation. The author has calculated the thermal flux coming to the workpiece from this zone.

It is assumed in the formulation of the problem that the chip and the workpiece comprise two moving
half-spaces which abut across the contact triangle OAB, that the process is steady, that the cut metal is
a homogeneous and isotropic material, that its thermophysical properties are independent of the tempera-
ture, that the buildup deformation of cut metal occurs within a narrow zone regarded as a flat triangular
source of uniform intensity, that heat conduction parallel to the plane of this source is negligible, and that
the nose angle of the cutting tool is 90°.

Under these assumptions, the temperature field of the contact zone OAB is described as
1y A
9K=—2-1—0.56Kl‘/ En—7 (1)

where @ = (T—-T,)/(Ty—T,), with the temperature in the zone of basic deformation T and the temperature
of the workpiece prior to entering the contact zone Ty, the Kirpichev number Ki, the Peclet number Pey,
and the dimensionless space coordinate 7.

The solution is valid for Pep = 10.

Calculations based on formula (1) show that, within the practical range of machining conditions, the
temperature at individual points in the zone of buildup deformation may reach 700°C or higher and thus
degrade the superficial layer of the workpiece with 2 resulting high wear rate at the built-up edge at the
back of the tool. Such an appreciable tool wear the built-up
back edge in a machining configuration similar to the one shown
here is often encountered in practice.

The thermal flux transmitted from the zone of buildup de-
formation to the workpiece is, in dimensionless form,

1 g
= +0.75(1—¢1>1/Pea.m3?.

where §; denotes the dimensionless flux transmitted to the work-
piece from the zone of basic deformation in cut metal, & denotes
the per unit shear in the zone of basic deformation, ¥ denotes
the limiting rake angle, and the Peclet number Pey is a function
of the cutter speed vs.

By a comparison between measured and calculated values
of thermal flux transmitted to the workpiece from the built-up
cutting edge of the tool, this mathematical model is shown to

Fig. 1. Schematic diagram of a con- reflect the fundamental laws governing the heat transfer from
strained machining operation: 1) chip; a chip to the workpiece within the zone of buildup deformation in
2) workpiece; 3) tool. cut metal.

Original article submitted May 6, 1971; abstract submitted March 10, 1972.
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CONCERNING THE MECHANISM OF HEAT
CONDUCTION AND THERMAL EXPANSION
DURING HEATING

N. I. Nikitenko UDC 53.01:536.1

According to the physical model of the heat conduction process analyzed in [1], the energy E (above
the reference level) of particles in a body is proportional to the energy Q emitted by these particles per
unit time:

Q=s£. (1)

On the basis of relation (1), an integrodifferential equation of heat conduction is derived from which,
as special cases, follow the Fourier equation and the hyperbolic equation describing high-rate heat trans-
fer processes.

The energy flux of carriers emitted by a particle exerts a pressure on other particles in the body.
This pressure is proportional to the energy flux @ and, therefore, to the energy of particles E. Simple
mathematical operations yield a relation between thermal stresses and the temperature, as well as an
expression for the thermal expansivity in agreement with Gruneisen's law.

Relation (1) yields the basic distribution laws of statistical physics. According to the concepts de-
veloped in quantum mechanics, particles of a body can emit energy in packets equal to or multiples of a
quantum hv. We find the probability W,y that a subsystem of N particles is at the energy level m and has
the energy content E, . If Ly is the number of subsystems containing N particles each, then LN
= LyWmN such subsystems will be at the energy level m and will emit energy QmN = eLNWmNEmN per
unit time. If a subsystem, while emitting energy, jumps to the zero level (m = 0), then By n = QN EmN
= eLyWy,y subsystems will leave level m as a result of energy emission.

All particles of the system emit the total energy E.. It is distributed over the subsystems in pro-
portion to their respective absorption cross sections gyy. The subsystems of N particles at level m receive

an energy Q;nN = SLNWmNEZO'N/O', where o =; LNcrN, and, consequently, B;an = Q;nN/hv subsystems

will jump from level m to level m + 1. As a result of the same process, By N = Qm-1,N/bv subsystems
will jump from level m—1 to level m. In this way, the number of subsystems at level m lpN = Eqon/bY)
becomes

dLNWmN ot . 1
= Bain—Ban— By =Ly oy |Wpy v (H'W) Wonn ] (2)

Solving Eq. (2) for systems in equilibrium simultancously with the equations of constant subsystems
number and constant energy yields, after correspondence between statistical and thermodynamic quan-
tities has been established, the canonical and the canonical in the large sense Gibbs distribution, followed
by the Bose—Einstein and the Fermi—Dirac distributions. For a system in equilibrium we have

1 E,u E,
o= 38 () M=l My My =g ®

where
ov ! )—MN]. _ My~
= Nl 4 — ; =N TN,
2= %y Py + )[ +MN —q’N( -+ . aMNN> My ('pN Em))
apn=1lform=0,1,..., My—1; and ¢nhvy = hvn/[exp (hwy/kt)—1] is the mean energy of a subsystem

containing N particles. When MN/qu — o, Eq. (3) yields the Maxwell-Boltzmann distribution.

The sign of Z in Eqs. (24) and (27) in the printed text is erroneous.

Institute of Engineering Thermophysics, Academy of Sciences of the Ukrainian SSR, Kiev. Original
article submitted February 2, 1971; abstract submitted March 7, 1972.
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TRANSIENT HEAT CONDUCTION THROUGH A
TWO-LAYER CYLINDER

M. Ya. Pekarskii, N. Yu. Taits, ' UDC 536.21
and Z. N. Golovina

In view of the complexity of the exact solution to the problem of heat conduction through a two-layer
cylinder [1], its use for engineering calculations is very difficult. For this reason, an approximate solu-
tion to this problem is considered with linear boundary conditions and with a uniform initial temperature
distribution. The solution is obtained by the method of averaging the functional corrections [2, 3]. The
solution is given for the inertial and for the regular process modes. According to this method, for the
inertial mode we let

a0, 0%,

P = f,(t) and s = By,
where
13
N S - WS N R I
b =55m S (e =% % )dp’
P(T)
Pz Ty
1 90,
= ————— | | —* dpds.
b= e .'515 o dp,r

1

with the relative temperature drop 6; = (Ti—Tm)/ (To=Ty) (i =1, 2), the dimensionless time T = alhgt, the
dimensionless radius p = hr, h =a /Ay, Ka =a,/ay, Ai is the thermal conductivity, ai is the thermal dif-
fusivity, « is the coefficient of external heat transfer, t is the time, r is the radius, v (t) is the depth of
thermal flux penetration, and 7 is the length of the inertial period. The temperatures in the layers are
determined by the temperature ¢ in the contact zone:

i 1 Bc+E 72
6 =1—(1 ec)[l 5 ele—ep) I—BC]’
o —p) (1 —
'Bz=7(ai‘[(l+9-z“‘9)ec— P f"‘p +";+") g],
) 1

which is found from the equation

Here

1 2
P2 —p1) [H‘ oy — 91)]
o L. L 2 1 —0¢(1y)
& == (pg —P1) [H’ 2 () 91)] Ba== Ka (1 ps— p) % .

The length of the inertial period is determined from the expression

171 1 1 1
To=-3—(;[—2~px(l+—4—plw)~‘;-ln (H—*;pﬂn)] .

Original article submitted December 23, 1971; abstract submitted February 16, 1972.
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For the regular mode we let

2.

i a6 320,
‘——aa—(p 1)=ﬁ1("7)v 2 = B,
Y P (Y

o dp?

where

P2 P2 TF

1 o0 1 gs’a%
=—\="dp = =2 dpdt,
R AL oTrereree sl B

0 P1To

and then

2 o 2 2
Py — o (p] — 0%
1P )0c+ 1 e,

0, =11
ot (+2‘DP1 2p;

.01(1+'3—w.01

20 (T — Ty)
0.+ & = [0x(mo) -+ E (To)] xp [ - —_1——'3 } [l

6, and ¢ are found from the respective expressions for the inertial mode.

A comparison with the exact solution shows that this approximate solution is sufficiently accurate for
engineering purposes. As an example, the cooling of a cylindrical ingot under the skin layer is determined
according to this method and the results indicate an appreciable effect of that layer on the cooling process.
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STEADY-STATE TEMPERATURE FIELD OF A
RECTANGULAR PLATE WITH MIXED
BOUNDARY CONDITIONS ON ONE SIDE

E. P. Trofimov UDC 536.2.01

In practical applications of thermophysics there arise problems of determining the temperature fields
of bodies with mixed boundary conditions at the reference surface. The well-known analytical methods of
solving such problems are difficult to use for specific cases, because they reduce to a solution of infinite
systems of linear equations. The feasibility of solving such problems analytically without resorting to in-
finite systems is shown here on the example of heat transmission through a rectangular tetrahedron.

The temperature field of the tetrahedron is described by the Laplace differential equation:

2t (x, y) 0% (x, y) _
ox? Jy? 7 (H

0LxCR, — Iyl

with mixed boundary conditions:

t(x: _‘hl) =1, (2)
t(x: hZ) = fz» (3)

All-Union Scientific-Research and Design-Engineering Institute of Complex Automation in the Oil and
Gas Industry. Original article submitted January 29, 1971; abstract submitted March 7, 1972.
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3 |+
5 x -0 ~5 o 5 P
90,y
—a =0 (4
AR o _mcy<o, (5)
ax T
tR, =t 0Lyl (6)

Equation (1) is solved by means of finite integral transformations for y > 0 and y < 0. The unknown
integration constants are determined from the compatlbihty equatlons by eliminating one of the two kernels
in the integral transformation: |

h 2
& (0) 7?1_ + 4+ -I_i’— 2 ¢y{0) cos 6x = £, - ——1—2—2 £5(V) cos vx, (7
o v
¢1(0) —‘% + —z— 2 £y(0) o cth ok, cos ox = — -1%— 2 €o(v) v cth Vi, cos vx, (8)
o v

whereg=mTm/R, m=0,1,2,...,v=720+1)/2R, andn=0,1, 2,...

The final solution is

— b <Ly0,
= g e o B Bt PR 2 | ©
0Ly <l )
~ 3k mman o,
b= 2 T b (11

2 g1 1

ﬂ"l"-R? el 2 "L thvky cthvh, (12)

This solution is compared with the solution to the same problem by statistical tests (Monte Carlo

method); the comparison is shown graphically. Both sets of values agree within the accuracy of the
numerical method.

tx, y)
X,y
R

hy, hy
t, ty
o,V
m, n
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NOTATION

is the temperature of the rectangular plate;

are the coordinates;

is the dimension of the plate on the x axis;

are the dimensions of the plate on the y axis;

are the temperatures on the boundaries of the plate;

are the significance of the nuclear transformation integral;
are the number of natural series.
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APPROXIMATE SOLUTION TO THE PROBLEM OF
CONSOLIDATION UNDER CREEP IN A SWELLING
SOIL BED

A. L. Goldin UDC 624.131
The consolidation of a swelling soil is considered here in the V. A, Florin formulation of the prob-

lem, taking into account the rheological properties of the soil matrix. The consolidation equation, in con-
ventional notation,

— aovr‘%z(m —V1vi (@ + &) _@%(1 + vl +B(1+em) j;tiz
Pl oy B el 5 = k(1 o) (1 G+ 2 ) M
is solved for the initial conditions
B 0)=0, 0<z<hoand —agy; o= — armvgh +v 1o + B0+ )] %? + arpeyH=k (1 4 ery) Qg—f; (2
and the boundary conditions
H=0 for z=h(f), %:Q for z=0. (3)

Introducing the variable £ = z/h(t) and applying the Fourier cosine transformation with finite limits,
we obtain for the image function H,, when h{t) = at + Iy

d’H,
A 3
(ot =+ ko) 7

dH, _ .
+ [ (@ + ho)® + cn (ot - hy)) 7 calyu(o + ko) — 2a] Hy+ bu(at -+ ko) = 0 {4

{a, by, and ¢, depend on the calculated soil characteristics). The initial conditions for this equation are
obtained from the initial conditions (2) after a Fourier cosine transformation.

A simplification of Eq. (4), with a¢; assumed much smaller than a, and 2a¢ assumed negligibly smaller
than v,(at + hy) at large values of t, yields the following approximate solution to Eq. (4):
14

Hy = 5‘ exp [yl(z — ¥ {A,, exp [—62_:”1 (2n + 1)2] — b, f exp [ 6( T 2 ) on 4 1)2] d'r} i, 5)
b 6

T4+m z24m

n=20,1, 2...,

where m = hy/a, while A, and 6 are determined from the soil characteristics.

B. E. Bedeneev All-Union Scientific-Research Institute of Water Engineering, Leningrad. Original
article submitted November 27, 1971; abstract submitted February 11, 1972,
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The magnitude of the excess head is found by an inverse Fourier cosine transformation.

Formula (5) was used for calculating the threshold pressure in a soil bed with the following param-
eters: ag=5-10"% cm%/kg, ay = 2-107° cm?/kg, ¥ = 1074 h™!, k = 107" cm/sec, B' = 5-107° em?/kg, &
=0.54, vi=2 tons/m?, a = 0.275 m/24 h, and hy =1 m. The maximum excess head was found to occur
at point z = 0, 254 m for a bed 300 m high. The approximate solution did not deviate from the exact solu-
tion by more than 5-6%.

INTERPOLATION METHOD OF DETERMINING THE
THERMAL CONDUCTIVITY OF PHASES IN A
TWO-PHASE HETEROGENEOUS SYSTEM

V. S. Vol'kenshtein, N. N. Medvedev, UDC 536.2.083
Z. M. Leont'eva, and S. A. Shalatskaya
In the proposed method, glass balls (the system matrix) with an unknown thermal conductivity are
placed successively in two liquids with known thermal conductivities Ay, A, and the corresponding effective
thermal conductivities A{, A, are measured each time. When Ay < A, then A; < A; when A, > A, then
A5 > A. By interpolation we find A' = A. The interpolation formula is
B

=T (D

where
b—h : ,
A=-5\;‘;—kl—‘, B = AI—A).1=I,2—A)»2.
Formula (1) applies when the relation A' = £(a) is linear. Experiments described in the article show that
this condition applies, as long as A, and A, do not differ too' much from A. In order to determine the ther-
mal conductivity of a liquid, one pours that liquid (unknown thermal conductivity A4) into the vessel with
balls. Having then measured the effective thermal conductivity of the system and knowing the values of A
and B in Eq. (1) from the preliminary calibration test, one finds the thermal conductivity of the test liquid
by the formula
M—B
1T

We note that in this case the thermal conductivity of the balls material does not have to be known.

(2

This method is particularly convenient for determining the thermal conductivity of liquids. The
main difficulty in that case is usually to eliminate the effects of convection and radiation. This makes it
necessary to perform the measurements on thin layers and thus complicates the experiment. In the pro-
posed method, filling the interstitial space between balls in a sufficiently deep vessel does not result in
the formation of thick layers. —

The interpolation method was used by the authors for determining the thermal conductivity of sugar
solutions, spherical solid spheres, and granular material.

Lensovet Institute of Technology, Leningrad. Original article submitted July 19, 1971; abstract
submitted February 24, 1972.
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OVERRADIATION IN HIGH-TEMPERATURE
HEAT EXCHANGERS

F. R. Shklyar, M. I. Agafonova, UDC 536.27
and V. M. Malkin

The effect of overradiation along the channel of a counterflow heat exchanger on the temperature of
flue gases and the chimney walls is evaluated here. The problem is formulated as follows: a heat ex-
changer consists of circular-section channels with an infinite thermal conductivity in the transverse di-
rections and a zero thermal conductivity lengthwise. Through some channels flows a "hot" heat carrier,
through other channels flows cold air in the opposite direction (recuperative heat exchanger).

For an analysis of a regenerative heat exchanger, we replace the latter by an equivalent recuperator.

Heat is transmitted from the hot gas to the wall and from there to the cold gas by convection (radia-
tion from the gas is lumped into the heat transfer coefficient). The system of equations which describes
the temperature field of the heat exchanger includes the equation of heat balance for "hot" and "cold" gases
in a channel element and the equation of heat transfer at the wall, the latter equation taking into account
radiation fluxes from all channel segments and from the space below as well as above the chimney. The
boundary conditions in the problem stipulate the gas temperature at the channel entrances.

The equations were treated in the finite-difference approximation with gas temperature at the ends
of the channel element assumed known and the wall temperature assumed equal to the mean.

Radiation terms in the equation were averaged over the channel element. The problem was solved
by interpolation with respect to a radiation term and by the Newton method in the boundary-value stage.
An appropriate program had been set up for using a "Minsgk-22" digital computer.

In order to improve the convergence at large values of the radiation term, the authors applied the
"damping" method with a following temperature approximation used only for establishing the sense and
the magnitude of temperature changes and with the radiation term calculated accordingly from the cor-
rected temperature field in terms of the respective preceding approximation.

Calculations were made for chimneys of blast-furnace air heaters. According to these caleulations,
overradiation results in a rise of both the air temperature and the smoke temperature. The apparent
heat deficit is wiped out by a source associated with overradiation. Overradiation raises the temperature
of both gases and of the chimney along the entire height of the heat exchanger and, if both gases have the
same water equivalent, the temperature distribution along the chimney height becomes nonlinear with the
knee of the curve toward higher temperatures.

v

An analysis of the results has shown that at smoke temperatures up to 1500°C in long channels (over
500 diameters long) the effect of radiation on the temperature field is small. As the blast temperature
{temperature of the flue gases at the chimney entrance) rises, the effect of radiation becomes more appre-
ciable and must be considered in the selection of chimney materials.

All-Union Scientific-Research Institute of Metallurgical Heat Engineering, Sverdlovsk. Original
article submitted August 12, 1971; abstract submitted March 21, 1972.
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ANALYSIS OF TEMPERATURE FIELDS AND THERMAL
STRESSES IN THE REGULAR MODE

Yu. P. Kotel'nikov UDC 536.12:539.319

It has been shown in [1, 2] that heating of bodies with internal heat sources will proceed in the regu-
lar mode, if the temperature is read relative to its steady-state level.

Such a method of regularization is adopted here to the case of a hollow cylinder whose both surfaces,
inside and outside, participate in heat transfer under mixed boundary conditions of the third kind. By a
modification of the integral method, a solution is obtained which involves the minimum number of dimen-
sionless parameters and, at the same time, applies to transient heating of the cylinder from either inside
or outside as well [3].

This solution makes it possible to extend well-known relations applicable to the regular heating mode
also to thermal stresses and to represent those relations in an explicit analytical form convenient for
practical use:

1. During the regular stage of heat transfer, the logarithm of the dimensionless temperature 6 and
the logarithm of dimensionless thermal stresses H both change at the same rate at all points, this rate
remaining counstant in time: B

dlng aInH
aFe k0 "
where M denotes the dimensionless heat transfer rate
12 [2Bi, -+ (2 - ©) BigBip + 2 (1 -+ @) Bip] )
T 122+ 0) 4 (8 + 50) Big + (2+ ©) BigBip-+(8 + 30) Bip ’
B Te—T . __ (=p '
0— 71, ¥ TEa (Ty—9
and w is an indicator of the wall curvature.

M

(00 — 04);

A relation between the rate of change of M and the Kondrat'ev number is derived for the given cylin-
der with a doubly-connected surface.

2. For any two points on the cylindrical wall (., ng) the ratio of dimensionless temperatures g and
the ratio of dimensionless thermal stresses y in the regular mode remain invariable:

6, 2+ Bip-+ (2 + Bip) Bign, — (Bis + BiBip-+ Bip

Brs=—= - == const.
8, 2+ Bip+ (2+ Bip) Bigns — (Big + BigBi, + BipJ L
The ratio of thermal stresses on the surfaces of a hollow cylinder is
_ A, (8+50) Big+ (2+ ) BigBip— (4 + 30) Bip _

Tp = Hy, ™~ + ) Bi,— 2+ ) BiBi,— (8- 30) Bip

3. The time till the same dimensionless temperature and equal in magnitude thermal stresses are
established at any two points of a hollow cylinder during the regular heating stage remains invariable:
- . inf;
Fo (1; 8) —Fo (ns; 9)=—n[—§i;

Iny,s
TR

The relations derived here simplify the solution of engineering problems and the analysis of thermal
stresses.

{Fo (13 | HI) — Fo (nsi | H]) =
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EXPERIMENTAL DETERMINATION OF THE WET-BULB
TEMPERATURE IN HIGH-TEMPERATURE GASES*

E. N. Bukharkin UDC 536.248.2

During contact with a gas, water can be heated up to the wet-bulb temperature tyy at which the sen-
sible heat from the gas to the liquid and the latent heat of evaporation from the liquid to the gas are in a
dynamic equilibrium. It is usually assumed for water [1, 2] that ty; is equal to the temperature of adia-
batic saturation t", i.e., the temperature of static equilibrium between gas and water after the processes
of heat and mass transfer have been completed.

It has been established experimentally that ty; and t" are identical at moderate gas temperatures
(60-300°C) [1, 2]. At high gas temperatures no such correspondence between tyg and t" could be confirmed
experimentally. At the same time, with the gas parameters fixed, tp depends on the trend of the h—s
diagram (Appendix 1), which is determined by the ratio @ /8, and is generally not equal to t" [3].

The problem of determining tys is important in praetical applications (e.g., heating a liquid by con-
tact with a gas). Thus, tp; is determined here for the case of contact between water and a high-tempera-
ture gas. The design of the test apparatus and the test procedure have been described earlier in [4].

The experiment was performed in the following manner: the contact column was flooded with water
at a temperature equal to t" of gases entering that column. The water temperature was measured along
the height of the column, including its lower section. The appropriate gas parameters were regulated by
an admixture of atmospheric air.

The experiment has shown that tp; and t" are almost equal (within 0.1°C}) within the 240-1030°C tem-~
perature range and the 0.3-1.2 m/sec veloeity range.

EQUILIBRIUM MOISTURE CONTENT IN
ZINC TETRAOXYCHROMATET

A, G. Bol'shakov and E. V. Stepanova UDC 66.047.1:667.622.1

The sorption equilibrium in zinc tetraoxychromate was studied at temperatures from 293 to 368°K
and a relative humidity of air ¢ over the 0,1-0.9 range. Zinc tetraoxychromate 5ZnO - CrOj; - 4H,0 is an
inorganic pigment included in high-quality protective primer coatings. It is obtained by a synthesis of
zinc oxide ZnO emulsion in water and chromic acid HyCrOy solution at a 333°K temperature. For this
study the authors used zine tetraoxychromate paste from an industrial reactor vat with an initial moisture
content 260% (referred to dry weight). The absolute dry weight of the material was determined after a
measured specimen had been dried at a temperature T = 378 + 2°K in the presence of P,O;, whereupon its
chemical composition was established by volumetric analysis. The chemical content was found to be:
70.5+ 0.5% ZnO, 17.8+ 0.1% CrO;, 11.7% 4H,0 (hydration moisture). The percent moisture content at
equilibrium was measured in percent of dry weight,

The equilibrium function fup, @, T) = 0 was explicated by an experimental determination of desorp-
tion isotherms for the given material. Sorption equilibrium was reached in an apparatus combining the
principles of classical and dynamic test procedures, as shown in Fig. 1. The essential components of this

*Original article submitted October 11, 1971; abstract submitted April 3, 1972.
T Odessa Polytechnica Institute, Odessa. Original article submitted October 25, 1971; abstract sub-
mitted March 29, 1972.
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Fig. 1. Schematic diagram of the test apparatus for determining the desorption isotherms for zinc
tetraoxychromate.

apparatus were: an exsiccator 11 covered hermetically with a 1id 15, a dc electric motor 8, a rectifier
14, an impeller 6, an insulation box 2, a thermostat jar 3 containing a heater coil 7, a pump 13, a contact
thermometer 1, thermometers 4 and 10, a vessel with H,SO, solution 9, and pillboxes containing the test
material.

The study covered also the effect of temperature on the stability of hydration moisture. It has been
found that the hydration moisture is heat resistant up to T = 523°K and does not affect the equilibrium
moisture content.

A family of desorption isotherms (T = 293, 308, 323, 348, 368°K) has been plotted for zinc tetraoxy-
chromate on the basis of both test data and calculations. An analysis of these S-shaped curves indicates
that this material is a capillary-porous colloid. Its bonded moisture amounts to approximately 3.2%. Mois-
ture with different types of bond to the dry zinc tetraoxychromate matrix appears in following percentages:
42% hydration moisture, 31.5% monomolecular adsorption moixture, 20% purely polymolecular adsorption
moisture, 25% partially polymolecular adsorption and partially capillary condensation moisture, and
18.8% moisture held by osmotic and wetting forces. This analysis indicates that moisture held by a strong
bond, namely hydration and monomolecular adsorption moisture, constitutes over one-half (56%) of all
. bonded moisture.

The following empirical equation describes approximately the field of equilibrium moisture contents
represeated by the family of isotherms: :

up = 21,8705 &80 (1)
where ¢ is expressed in fractions of unity. This formula, which contains three constants, yields, with a
mean error of +1.6%, the equilibrium moisture content in zinc tetraoxychromate over a wide range of

variables covered in the fests: 0.1 = ¢ =< 0.93 and 293°K = T = 368°K. The parameters in this empirical
relation have been evaluated by the method of least squares.
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STUDY OF GAS DYNAMICS IN VORTEX CHAMBERS

E. P. Sukhovich UDC 533.697

Rotational motion of an incompressible viscous fluid in vortex chambers is analyzed under turbulent
flow conditions. In order to describe the vortex hydrodynamics, the stream inside the chamber is tenta-
tively divided into four zones: 1) jet flow near the lateral cylinder surface, 2) mainstream, 3) boundary
layers at the end walls, and 4) region around the cylinder axis.

The energy loss in the jet, where a vortex is generated, is calculated by an approximate method on
the basis of the law of momentum conservation applied to this zone. The equation of motion for the main-
stream and the equation of the boundary layers at the end walls are solved simultaneously. On the basis of
this solution, a method is then developed for calculating the velocity field and the pressure field in the
mainstream and in the boundary layers at the end walls. The expressions for the tangential component of
velocity and for the static pressure in the peripheral zone are:

v R v R
z-;——:a—r—"— for Ry >r>ry; v—=s——~-——-r—:—;—~ for ry>r>ry
in in rl! A(-—* —*)}
[r+alz -z
P P, L 2( Rg) or R
5 o= 5 € I—T or Rg >r>ry;
0. 5pvin 0 : 5e07, r
P P, eRE | 22 r
= T 34%In
0.5p02 0.5007, 2 ( I )4 rn r
i in 1 1+ A4 [1 oAl __>
N R neT Ro R,

r- 2 r: 7
(e I A
2 R R R, o Ro/
+R2 - -+ 34 —R, for ry>r>r,
& rn r )
where
1 5 i
2 4 (2aR%e 4 &
Ll gy L
(ag — 1) : in ' winR"
h
e SR 2R,
. - R T ’
%inRo ! 40,027 (Upmar)in Re.ﬁ‘z gnRoln
%in o Fy
1,124 0.225
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These answers were verified experimentally in coaxial vortex chambers, in vortex chambers with
gas discharging through orifices in the end walls, and in vortex chambers with a single inlet slot and gas
injection tangentially through orifices distributed around the surface of the outer cylinder. The tests in-
cluded measurements of the velocity field and the pressure field in the mainstream, in the boundary layers
at the end walls, and at the lateral cylinder surface. These measurements have shown that at the end walls
in vortex chambers there appear radial secondary currents which appreciably affect the vortex hydrody-
namics. Analytical solutions based on a two-dimensional flow model which accounts for the interaction be-
tween mainstream and boundary layers agree closely with test data and can be used for calculating the
velocities and the pressures in vortex chambers.

Institute of Physics, Academy of Sciences of the Latvian SSR, Riga. Original article submitted
December 28, 1970; abstract submitted March 27, 1972,
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NOTATION

R, is the radius of the vortex chamber;

Ty is the radius of the outlet orifice;

h is the height of the inlet slot;

ly is the length of the vortex chamber;

Vin is the mean-over-the-mass velocity at the inlet slot;

Vo is the tangential component of the inlet velocity;

U, is the radial component of the inlet velocity;

£ is the velocity maintenance factor;

T is the radial coordinate; ,

Ty is the radius at which the radial spill current through the boundary layers at the end walls be-

comes equal to the rate of gas flow through the chamber;

p is the density;

P is the static pressure;

v is the kinematic viscosity;

Fin is the total cross section area of the inlet slot;
(Vmax)e 1is the maximum iniet velocity;

a; = 4.93;

a, = 0.269;

¢y = 0.02255.
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